ChIP peaks comparison
0
0
Entering edit mode
@9ae4560e
Last seen 5 weeks ago
France

Hello, I am trying to compare the peaks between 2 conditions to see what peaks belongs to which conditions. I have 15791 peaks where around 521 or 521 peaks are common between 2 conditions(S1 and S3) and 15450 are only for condition1. So I want to see which peaks are for condition S1 only and which are common, but the approach im using is not giving 100% correct results, for some peaks its correct for others it's not. I am working in R studio. Anyone have any idea of other approach or how can I adjust my script


 # Create GRanges objects for S1 and S3 peaks
 gr_S1 <- GRanges(seqnames = S1$seqnames, ranges = IRanges(start = S1$start, end = S1$end))
 gr_S3 <- GRanges(seqnames = S3$seqnames, ranges = IRanges(start = S3$start, end = S3$end))

 # Find overlaps between S1 and S3
 overlap_hits <- findOverlaps(gr_S1, gr_S3)

 # Add a status column to Chip_seq_data (assuming it has the S1 peaks)
 Chip_seq_finale <- Chip_seq_finale %>%
   mutate(status = ifelse(row_number() %in% queryHits(overlap_hits), "common", "S1 only"))

I tried another approach that didn't workout too

# Combine the peak information into a single string for easy comparison
 S3$peak_id <- paste(S3$seqnames, S3$start, S3$end, sep = ":")
 S1$peak_id <- paste(S1$seqnames, S1$start, S1$end, sep = ":")

 # Extract the unique peak_ids from both data frames
 all_peaks <- unique(c(S3$peak_id, S1$peak_id))

 # Identify common peaks
 common_peaks <- intersect(S3$peak_id, S1$peak_id)

 # Create a new data frame
 peak_status <- data.frame(
   peak_id = all_peaks,
   status = ifelse(all_peaks %in% common_peaks, "common", "S1 only")
 )
 # Split the peak_id back into seqnames, start, and end
 peak_status <- cbind(
   peak_status,
   do.call(rbind, strsplit(as.character(peak_status$peak_id), ":"))
 )

 # Rename the new columns appropriately
 colnames(peak_status)[3:5] <- c("seqnames", "start", "end")

 # Convert start and end to numeric
 peak_status$start <- as.numeric(peak_status$start)
 peak_status$end <- as.numeric(peak_status$end)

 # Merge additional information from S3 and S1
 peak_status <- merge(peak_status, S3_chromhmm, by.x = "peak_id", by.y = "peak_id", all.x = TRUE, suffixes = c("", "_S3"))
 peak_status <- merge(peak_status, S1_chromhmm, by.x = "peak_id", by.y = "peak_id", all.x = TRUE, suffixes = c("", "_S1"))

sessionInfo( )

R version 4.1.1 (2021-08-10)
Platform: x86_64-conda-linux-gnu (64-bit)
Running under: Ubuntu 20.04.6 LTS

Matrix products: default
BLAS/LAPACK: /shared/ifbstor1/software/miniconda/envs/r-4.1.1/lib/libopenblasp-r0.3.18.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C               LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8    LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C             LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] grid      stats4    stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] data.table_1.14.2                        reshape2_1.4.4                           TxDb.Hsapiens.UCSC.hg19.knownGene_3.2.2 
 [4] ChIPseeker_1.30.3                        ChIPpeakAnno_3.28.0                      msigdbr_7.4.1                           
 [7] ggupset_0.3.0                            DOSE_3.20.1                              RColorBrewer_1.1-3                      
[10] fgsea_1.20.0                             org.Hs.eg.db_3.14.0                      enrichplot_1.14.2                       
[13] clusterProfiler_4.2.2                    pheatmap_1.0.12                          VennDiagram_1.7.3                       
[16] futile.logger_1.4.3                      enrichR_3.2                              rtracklayer_1.54.0                      
[19] TxDb.Hsapiens.UCSC.hg38.knownGene_3.14.0 GenomicFeatures_1.46.1                   AnnotationDbi_1.56.1                    
[22] DiffBind_3.4.11                          BiocParallel_1.28.3                      BiocManager_1.30.25                     
[25] openxlsx_4.2.7.1                         readxl_1.4.3                             EnhancedVolcano_1.13.2                  
[28] ggrepel_0.9.6                            magrittr_2.0.3                           lubridate_1.9.3                         
[31] forcats_1.0.0                            stringr_1.5.1                            dplyr_1.1.4                             
[34] purrr_1.0.2                              readr_2.1.5                              tidyr_1.3.1                             
[37] tibble_3.2.1                             tidyverse_2.0.0                          DESeq2_1.34.0                           
[40] SummarizedExperiment_1.24.0              MatrixGenerics_1.6.0                     matrixStats_0.62.0                      
[43] GenomicRanges_1.46.1                     GenomeInfoDb_1.30.1                      IRanges_2.28.0                          
[46] S4Vectors_0.32.4                         Biobase_2.54.0                           BiocGenerics_0.40.0                     
[49] limma_3.50.3                             ggplot2_3.5.1                           

loaded via a namespace (and not attached):
  [1] rappdirs_0.3.3           coda_0.19-4              bit64_4.0.5              knitr_1.48               irlba_2.3.5.1           
  [6] DelayedArray_0.20.0      hwriter_1.3.2            KEGGREST_1.34.0          RCurl_1.98-1.9           AnnotationFilter_1.18.0 
 [11] generics_0.1.3           lambda.r_1.2.4           RSQLite_2.2.8            shadowtext_0.0.9         bit_4.0.4               
 [16] tzdb_0.2.0               xml2_1.3.3               viridis_0.6.2            amap_0.8-20              apeglm_1.16.0           
 [21] xfun_0.48                hms_1.1.3                babelgene_21.4           evaluate_0.17            fansi_1.0.3             
 [26] restfulr_0.0.13          progress_1.2.2           caTools_1.18.2           dbplyr_2.5.0             igraph_2.0.3            
 [31] DBI_1.2.3                geneplotter_1.72.0       htmlwidgets_1.5.4        annotate_1.72.0          biomaRt_2.50.0          
 [36] vctrs_0.6.5              ensembldb_2.18.2         cachem_1.0.6             withr_2.5.0              ggforce_0.3.3           
 [41] BSgenome_1.62.0          bdsmatrix_1.3-7          GenomicAlignments_1.30.0 treeio_1.18.1            prettyunits_1.1.1       
 [46] ape_5.5                  lazyeval_0.2.2           crayon_1.5.2             genefilter_1.76.0        pkgconfig_2.0.3         
 [51] tweenr_1.0.2             nlme_3.1-153             ProtGenerics_1.26.0      rlang_1.1.4              lifecycle_1.0.3         
 [56] downloader_0.4           filelock_1.0.2           BiocFileCache_2.2.0      invgamma_1.1             cellranger_1.1.0        
 [61] polyclip_1.10-0          graph_1.72.0             Matrix_1.3-4             aplot_0.1.1              ashr_2.2-47             
 [66] boot_1.3-28              png_0.1-7                viridisLite_0.4.1        rjson_0.2.20             bitops_1.0-7            
 [71] KernSmooth_2.23-20       Biostrings_2.62.0        blob_1.2.2               mixsqp_0.3-43            SQUAREM_2021.1          
 [76] qvalue_2.26.0            regioneR_1.26.0          ShortRead_1.52.0         jpeg_0.1-9               gridGraphics_0.5-1      
 [81] scales_1.3.0             memoise_2.0.1            plyr_1.8.7               gplots_3.2.0             zlibbioc_1.40.0         
 [86] compiler_4.1.1           scatterpie_0.1.7         BiocIO_1.4.0             bbmle_1.0.24             plotrix_3.8-2           
 [91] Rsamtools_2.10.0         cli_3.6.3                systemPipeR_2.0.4        XVector_0.34.0           patchwork_1.1.1         
 [96] formatR_1.11             MASS_7.3-54              tidyselect_1.2.1         stringi_1.7.8            emdbook_1.3.12          
[101] yaml_2.3.6               GOSemSim_2.20.0          locfit_1.5-9.4           latticeExtra_0.6-29      fastmatch_1.1-3         
[106] tools_4.1.1              timechange_0.3.0         parallel_4.1.1           rstudioapi_0.17.0        gridExtra_2.3           
[111] farver_2.1.1             ggraph_2.0.5             digest_0.6.30            Rcpp_1.0.9               WriteXLS_6.7.0          
[116] httr_1.4.7               colorspace_2.0-3         XML_3.99-0.9             truncnorm_1.0-8          splines_4.1.1           
[121] yulab.utils_0.0.4        RBGL_1.70.0              tidytree_0.3.6           graphlayouts_0.8.0       multtest_2.50.0         
[126] ggplotify_0.1.0          xtable_1.8-4             jsonlite_1.8.9           ggtree_3.2.1             futile.options_1.0.1    
[131] tidygraph_1.2.0          ggfun_0.0.4              R6_2.5.1                 pillar_1.9.0             htmltools_0.5.2         
[136] glue_1.6.2               fastmap_1.1.0            GreyListChIP_1.26.0      mvtnorm_1.1-3            utf8_1.2.2              
[141] lattice_0.20-45          numDeriv_2016.8-1.1      curl_4.3.3               gtools_3.9.3             zip_2.2.0               
[146] GO.db_3.14.0             survival_3.2-13          rmarkdown_2.27           InteractionSet_1.22.0    munsell_0.5.0           
[151] DO.db_2.9                GenomeInfoDbData_1.2.7   gtable_0.3.1    
`
ChIPSeqData genomes ChIPSeq • 142 views
ADD COMMENT

Login before adding your answer.

Traffic: 662 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6