I have DESeq2 results and I want to label all of the genes that contain U12 introns in a volcano plot using enhancedVolcano.
I labeled the genes containing U12 introns by making a separate column (intron_type) where U12 == TRUE and U2 == FALSE, but when I run the enhancedvolcano, not all of my genes are showing up. Here is the code.
test$intron_type <- ifelse(test$transcript_id %in% U12$transcript_id, TRUE, FALSE)
my_list <- ifelse(test$log2FoldChange > 0.5 & test$padj < 0.05 & test$intron_type == TRUE, test$transcript_id, NA)
my_list <- my_list[!is.na(my_list)]
my_list
EnhancedVolcano(test, x = 'log2FoldChange', y = 'padj', lab = test$transcript_id,
FCcutoff = 0, pCutoff = 10,
labSize = 3,
selectLab = my_list,
drawConnectors = TRUE,
arrowheads = FALSE)
I have also tried just copying and pasting the list of genes (c('enst1', 'enst2', etc. ) and it only labeled about 20/100 genes. Any help would be greatly appreciated. Thank you.
Sessioninfo
sessionInfo()
R version 4.0.3 (2020-10-10)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS High Sierra 10.13.6
Matrix products: default
BLAS: /System/Library/Frameworks/Accelerate.framework/Versions/A/Frameworks/vecLib.framework/Versions/A/libBLAS.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] forcats_0.5.0 stringr_1.4.0 purrr_0.3.4 readr_1.4.0 tibble_3.0.4 tidyverse_1.3.0
[7] tidyr_1.1.2 dplyr_1.0.2 EnhancedVolcano_1.7.16 ggrepel_0.9.0 ggplot2_3.3.2.9000
loaded via a namespace (and not attached):
[1] ggbeeswarm_0.6.0 colorspace_1.4-1 ellipsis_0.3.1 rprojroot_1.3-2
[5] XVector_0.28.0 GenomicRanges_1.40.0 fs_1.5.0 rstudioapi_0.11
[9] farver_2.0.3 bit64_4.0.5 AnnotationDbi_1.50.3 fansi_0.4.1
[13] lubridate_1.7.9 xml2_1.3.2 splines_4.0.3 extrafont_0.17
[17] geneplotter_1.66.0 knitr_1.30 pkgload_1.1.0 jsonlite_1.7.1
[21] Rsamtools_2.4.0 broom_0.7.2 Rttf2pt1_1.3.8 annotate_1.66.0
[25] dbplyr_1.4.4 compiler_4.0.3 httr_1.4.2 backports_1.1.10
[29] assertthat_0.2.1 Matrix_1.2-18 cli_2.1.0 htmltools_0.5.0
[33] tools_4.0.3 gtable_0.3.0 glue_1.4.2 GenomeInfoDbData_1.2.3
[37] maps_3.3.0 tinytex_0.26 Rcpp_1.0.5 Biobase_2.48.0
[41] cellranger_1.1.0 vctrs_0.3.4 Biostrings_2.56.0 ggalt_0.4.0
[45] rtracklayer_1.48.0 extrafontdb_1.0 xfun_0.18 testthat_2.3.2
[49] rvest_0.3.6 lifecycle_0.2.0 XML_3.99-0.5 zlibbioc_1.34.0
[53] MASS_7.3-53 scales_1.1.1 hms_0.5.3 parallel_4.0.3
[57] SummarizedExperiment_1.18.2 proj4_1.0-10 RColorBrewer_1.1-2 yaml_2.2.1
[61] memoise_1.1.0 ggrastr_0.2.1 stringi_1.5.3 RSQLite_2.2.1
[65] genefilter_1.70.0 S4Vectors_0.26.1 desc_1.2.0 BiocGenerics_0.34.0
[69] BiocParallel_1.22.0 GenomeInfoDb_1.24.2 rlang_0.4.8 pkgconfig_2.0.3
[73] matrixStats_0.57.0 bitops_1.0-6 evaluate_0.14 lattice_0.20-41
[77] GenomicAlignments_1.24.0 labeling_0.4.2 bit_4.0.4 tidyselect_1.1.0
[81] magrittr_1.5 DESeq2_1.28.1 R6_2.5.0 IRanges_2.22.2
[85] generics_0.0.2 DelayedArray_0.14.1 DBI_1.1.0 pillar_1.4.6
[89] haven_2.3.1 withr_2.3.0 survival_3.2-7 RCurl_1.98-1.2
[93] ash_1.0-15 modelr_0.1.8 crayon_1.3.4 KernSmooth_2.23-17
[97] rmarkdown_2.5 locfit_1.5-9.4 grid_4.0.3 readxl_1.3.1
[101] blob_1.2.1 reprex_0.3.0 digest_0.6.27 xtable_1.8-4
[105] stats4_4.0.3 munsell_0.5.0 beeswarm_0.2.3 vipor_0.4.5
Thanks so much Kevin. I did not necessarily want to label the whole 100, just the top 15/20 or so, but when I did the annotation it appeared to be random even when I made the my_list a list of those genes. Either way, I think it is more visually appealing with changing the color/shape so I ended up doing that. Thanks for your help.
Noah