Sounds like you'd just need a single factor to model the experiment, where if U corresponds to 0hours, and e.g. T has 2hours, 4hours 16hours, then you'd simply label the replicates with a single factor, with levels 0h, 2h, 4h, 16h etc. You obviously won't be able to infer anything about how the untreated samples evolve over time, so you won't be able to remove such effects from the analysis, so all your conclusions will have to be worded with this in mind. You say you've previously done the other, more complete design, which to me seems to offer a safer approach to meaningful biological hypotheses, so I guess it's cost issues that are driving the question?
The only option for an LRT with one factor is to compare ~time against ~1, which will look for genes that reject the null of being constant across all 'timepoints' (ie are the same across all the treated samples, and the same as the untreated).
DESeq2 is more than capable of answering comparisons between pairs of timepoints, including the 0h (untreated) vs 2h (treated), for example - for this you'd need the Wald test, rather than the LRT. Just remember to code the timepoint term as a factor, as if you code it as a numeric, the comparisons will look for linear changes of (transformed) expression across time, which mightn't be what you want.
Thank you very much for your answer!
about your question:
"I guess it's cost issues that are driving the question?"
I'm trying to understand and capture different approaches to model the time course data analysis.
So, for the (more complex) design, using DESeq2, didn't give me any problem, also because it's the best way to model a time-course experiment, but in the other case (the cheapest one) my first attempt gave me problems while running DESeq2, that's why I was asking about this special case. (and also because I noticed that this case is very common in published time-course data over internet).
For the second part:
"DESeq2 is more than capable of answering comparisons between pairs of timepoints, including the 0h (untreated) vs 2h (treated), for example - for this you'd need the Wald test, rather than the LRT."
Yeah, looking at the LRT "complete" results it's possible to capture all the comparisons made between time-points versus the 0h, and also to retest the LRT observed results, running a Wald test on them. But they will be always the differences obtained starting from time-point 0. It'd be a different meaning of the biological question respect to the one observed using the LRT test.
"Just remember to code the timepoint term as a factor, as if you code it as a numeric, the comparisons will look for linear changes of (transformed) expression across time, which mightn't be what you want."
Could you please better explain this part?
Thanks,
Inzirio