How to get genes corresponding to a GO term from topGOData object?
1
1
Entering edit mode
rishi.dasroy ▴ 20
@rishidasroy-7142
Last seen 7 months ago
Finland

Hi,

I have a topGOdata object which is built with following command

> GOdata <- new("topGOdata",
                     description = "Simple session", ontology = "BP",
                     allGenes = na.omit(t), geneSel = topDiffGenes,
                     nodeSize = 10, annot = annFUN.gene2GO, gene2GO = microGeneID2GO)

> resultFisher <- runTest(GOdata, algorithm = "classic", statistic = "fisher")
> resultKS <- runTest(GOdata, algorithm = "classic", statistic = "ks")
> resultKS.elim <- runTest(GOdata, algorithm = "elim", statistic = "ks")
> allRes_topDiffGenes_.05 <- GenTable(GOdata, classicFisher = resultFisher,
                   classicKS = resultKS, elimKS = resultKS.elim,
                   orderBy = "elimKS",  ranksOf = "classicFisher", topNodes = 11)

With the help of following termStat ,

> termStat(GOdata,"GO:0051797")
           Annotated Significant Expected
GO:0051797        11          10     1.98

Now how can I extract the list of annotated and significant genes correspond to GO:0051797? I am getting following errors

> printGenes(GOdata,whichTerms = "GO:0051797")
Error in sub(".db$", "", chip) :
argument "chip" is missing, with no default

Please help,

Rishi

> sessionInfo()
R version 3.2.2 (2015-08-14)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 14.04.4 LTS

locale:
 [1] LC_CTYPE=fi_FI.UTF-8       LC_NUMERIC=C               LC_TIME=en_GB.UTF-8        LC_COLLATE=en_GB          
 [5] LC_MONETARY=en_GB.UTF-8    LC_MESSAGES=en_GB          LC_PAPER=en_GB.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C             LC_MEASUREMENT=en_GB.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
 [1] stats4    parallel  grid      stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] GOplot_1.0.1         genefilter_1.52.1    org.Mm.eg.db_3.2.3   plyr_1.8.3           RColorBrewer_1.1-2   gridExtra_2.2.1     
 [7] ggdendro_0.1-18      ggplot2_2.1.0        ROCR_1.0-7           gplots_2.17.0        topGO_2.22.0         SparseM_1.7         
[13] GO.db_3.2.2          RSQLite_1.0.0        DBI_0.3.1            AnnotationDbi_1.32.3 IRanges_2.4.8        S4Vectors_0.8.11    
[19] Biobase_2.30.0       graph_1.48.0         BiocGenerics_0.16.1  mGSZm_1.0            limma_3.26.8         GenomeGraphs_1.30.0
[25] biomaRt_2.26.1      

loaded via a namespace (and not attached):
 [1] Rcpp_0.12.3            lattice_0.20-33        listenv_0.6.0          gtools_3.5.0           digest_0.6.9          
 [6] aroma.core_3.0.0       R.devices_2.14.0       R.huge_0.9.0           BiocInstaller_1.20.1   zlibbioc_1.16.0       
[11] annotate_1.48.0        gdata_2.17.0           R.utils_2.2.0          R.oo_1.20.0            preprocessCore_1.32.0
[16] labeling_0.3           splines_3.2.2          RCurl_1.95-4.8         munsell_0.4.3          base64enc_0.1-3       
[21] aroma.apd_0.6.0        R.rsp_0.21.0           globals_0.6.1          DNAcopy_1.44.0         codetools_0.2-14      
[26] matrixStats_0.50.1     XML_3.98-1.4           future_0.12.0          MASS_7.3-45            bitops_1.0-6          
[31] R.methodsS3_1.7.1      xtable_1.8-2           gtable_0.2.0           affy_1.48.0            scales_0.4.0          
[36] KernSmooth_2.23-15     aroma.affymetrix_3.0.0 PSCBS_0.61.0           affyio_1.40.0          R.filesets_2.10.0     
[41] tools_3.2.2            Cairo_1.5-9            R.cache_0.12.0         survival_2.38-3        colorspace_1.2-6      
[46] caTools_1.17.1      

 

topGO microarray R gene ontology • 2.3k views
ADD COMMENT
1
Entering edit mode
mt1022 ▴ 10
@mt1022-13228
Last seen 7.0 years ago

By looking through its source code https://github.com/Bioconductor-mirror/topGO/blob/c8e1b9b506f6fa00542bf141b0f181f10f101ec7/R/topGOfunctions.R#L65, I find a workaround:

go.ids <-  "GO:0051797"
# extract annotated genes in each term -> a list
term.genes <- genesInTerm(go.data, go.ids)
# extract scores for genes in each term
term.gene.scores <- lapply(term.genes, function(x) stack(geneScore(go.data, x)))

 

 

 

ADD COMMENT

Login before adding your answer.

Traffic: 744 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6