Hey,
I saved a first chipQC object using consensus=TRUE,bCounts=TRUE,summits=250 options.
Then I reused it latter inside DiffBind.
First I was wondering if it uses score or count to make heatmap ? Documentation it misleading, it is said it uses scores but if you have add also your Input, necessarely it uses count from all region defined in input control because we don't have done peaks calling for input ... But when you don't retrieve a chipQC object which used consensus do you use score or count ? Not clear for me.
Second can you confirm , intervals that are used to make heatmap in the following workflow ?
experiment = ChIPQC(samples,annotation="hg38",consensus=TRUE,bCounts=TRUE,summits=250,chromosomes=c("chr1","chr2","chr3","chr4","chr5","chr6","chr7","chr8","chr9","chr10","chr11","chr12","chr13","chr14","chr15","chr16","chr17","chr18","chr19","chr20","chr21","chr22","chrX","chrY"),blacklist="/home/jean-philippe.villemin/mount_archive2/commun.luco/ref/genes/GRCh38_PRIM_GENCODE_R25/hg38.blacklist.bed.gz") dbasavefile <- dba.save(experiment, file=name_file_to_save, dir='.', pre='dba_', ext='RData', bMinimize=FALSE) #' Create Report. ChIPQCreport(experiment,facet=T,lineBy=c("Replicate"),facetBy=c("Condition","Factor"),reportName=paste0(opt$name,"Marks",collapse = "_"), reportFolder=opt$name,colourBy=c("Replicate"))
Then when I load my dba.RDATA object and try to plot heatmap, I get also control from Input. So necessarely it uses count from all region defined in control because we don't have done peaks calling for input ...
dba.show(dba_chip)
ID Tissue Factor Condition Treatment Replicate Caller Intervals
1 L13S13 MCF10 K27AC T1 Tamoxifen 1 macs 94888
2 L142S14 MCF10 K27AC T1 Tamoxifen 3 macs 100680
3 L17S17 MCF10 K27AC T7 Tamoxifen 1 macs 106629
4 L182S18 MCF10 K27AC T7 Tamoxifen 3 macs 87323
5 L15S15 MCF10 K27AC unT7 unTreated 1 macs 106930
6 L162S16 MCF10 K27AC unT7 unTreated 3 macs 109774
7 L7S7 MCF10 K27ME3 T1 Tamoxifen 1 macs 159118
8 L8S8 MCF10 K27ME3 T1 Tamoxifen 3 macs 140369
9 L11S11 MCF10 K27ME3 T7 Tamoxifen 1 macs 150973
10 L12S12 MCF10 K27ME3 T7 Tamoxifen 3 macs 131621
11 L9S9 MCF10 K27ME3 unT7 unTreated 1 macs 143701
12 L10S10 MCF10 K27ME3 unT7 unTreated 3 macs 157131
13 L1S1 MCF10 K4ME1 T1 Tamoxifen 1 macs 173416
14 L2S2 MCF10 K4ME1 T1 Tamoxifen 2 macs 169116
15 L5S5 MCF10 K4ME1 T7 Tamoxifen 1 macs 164891
16 L6S6 MCF10 K4ME1 T7 Tamoxifen 2 macs 179542
17 L3S3 MCF10 K4ME1 unT7 unTreated 1 macs 189781
18 L4S4 MCF10 K4ME1 unT7 unTreated 2 macs 170599
19 T1_INPUT MCF10 Control T1 Tamoxifen c1 269818
20 T7_INPUT MCF10 Control T7 Tamoxifen c2 269818
21 unT7_INPUT MCF10 Control unT7 unTreated c3 269818
dba.plotHeatmap(dba_chip_init)
So here it plots every sample for the 269818 intervals based on counts ?
dba_chip <- dba(dba_chip_init, mask=dba_chip_init@DBA$masks[[opt$name]]) dba_chip$config$fragmentSize <- dba_chip$config$fragmentSize[dba_chip_init@DBA$masks[[opt$name]]] dba_chip$config$fragmentSize print("Mask") dba.show(dba_chip) [1] "Mask" ID Tissue Factor Condition Treatment Replicate Caller Intervals 1 L1S1 MCF10 K4ME1 T1 Tamoxifen 1 macs 173416 2 L2S2 MCF10 K4ME1 T1 Tamoxifen 2 macs 169116 3 L5S5 MCF10 K4ME1 T7 Tamoxifen 1 macs 164891 4 L6S6 MCF10 K4ME1 T7 Tamoxifen 2 macs 179542 5 L3S3 MCF10 K4ME1 unT7 unTreated 1 macs 189781 6 L4S4 MCF10 K4ME1 unT7 unTreated 2 macs 170599
So it plots heatmap for 269818 intervals based on counts but with a mask on K4ME1 ?
dba.plotHeatmap(dba_chip)
dba_chip_consensus <- dba.peakset(dba_chip, consensus=c(type),minOverlap=0.99) dba.show(dba_chip_consensus) ID Tissue Factor Condition Treatment Replicate Caller Intervals 1 L1S1 MCF10 K4ME1 T1 Tamoxifen 1 macs 173416 2 L2S2 MCF10 K4ME1 T1 Tamoxifen 2 macs 169116 3 L5S5 MCF10 K4ME1 T7 Tamoxifen 1 macs 164891 4 L6S6 MCF10 K4ME1 T7 Tamoxifen 2 macs 179542 5 L3S3 MCF10 K4ME1 unT7 unTreated 1 macs 189781 6 L4S4 MCF10 K4ME1 unT7 unTreated 2 macs 170599 7 T1 MCF10 K4ME1 T1 Tamoxifen 1-2 macs 139069 8 T7 MCF10 K4ME1 T7 Tamoxifen 1-2 macs 138384 9 unT7 MCF10 K4ME1 unT7 unTreated 1-2 macs 118478 consensus_peaks <- dba.peakset(dba_chip_consensus, bRetrieve=TRUE) dba_chip <- dba.count(dba_chip, peaks=consensus_peaks) dba.show(dba_chip) ID Tissue Factor Condition Treatment Replicate Caller Intervals FRiP 1 L1S1 MCF10 K4ME1 T1 Tamoxifen 1 counts 182104 0.57 2 L2S2 MCF10 K4ME1 T1 Tamoxifen 2 counts 182104 0.57 3 L5S5 MCF10 K4ME1 T7 Tamoxifen 1 counts 182104 0.58 4 L6S6 MCF10 K4ME1 T7 Tamoxifen 2 counts 182104 0.57 5 L3S3 MCF10 K4ME1 unT7 unTreated 1 counts 182104 0.57 6 L4S4 MCF10 K4ME1 unT7 unTreated 2 counts 182104 0.55
dba.plotHeatmap(dba_chip)
Does it plot heatmap for 182104 intervals ?