Dear all,
I have this situation for a gene overexppressed:
Group A: average 85.33
GroupB: average 23081.19
average gene 1930.54
On the result table of differential expression:
basemean: 1930.54,log2Foldchange 5.115 lfcSE 0.341
The results seem more different from the ratio obtained..
I found this results also in other comparison:
GROUP A | GROUP B |
89.267 | 21448.225 |
baseMean | log2FoldChange | lfcSE | stat | pvalue | padj |
1794.7910 | 1.70 | 0.175111091 | 9.7157783091 | 2.58268280887747E-22 | 3.97733152567131E-18 |
Any idea?
R version 3.3.2 (2016-10-31) Platform: x86_64-pc-linux-gnu (64-bit) Running under: Ubuntu 16.04.2 LTS locale: [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C LC_TIME=it_IT.UTF-8 [4] LC_COLLATE=en_US.UTF-8 LC_MONETARY=it_IT.UTF-8 LC_MESSAGES=en_US.UTF-8 [7] LC_PAPER=it_IT.UTF-8 LC_NAME=C LC_ADDRESS=C [10] LC_TELEPHONE=C LC_MEASUREMENT=it_IT.UTF-8 LC_IDENTIFICATION=C attached base packages: [1] parallel stats4 stats graphics grDevices utils datasets methods base other attached packages: [1] gplots_3.0.1 genefilter_1.54.2 limma_3.28.21 [4] biomaRt_2.28.0 reshape2_1.4.2 RColorBrewer_1.1-2 [7] ggplot2_2.2.1 pheatmap_1.0.8 DESeq2_1.12.4 [10] SummarizedExperiment_1.2.3 Biobase_2.32.0 GenomicRanges_1.24.3 [13] GenomeInfoDb_1.8.7 IRanges_2.6.1 S4Vectors_0.10.3 [16] BiocGenerics_0.18.0 loaded via a namespace (and not attached): [1] gtools_3.5.0 locfit_1.5-9.1 splines_3.3.2 lattice_0.20-35 [5] colorspace_1.3-2 htmltools_0.3.5 base64enc_0.1-3 survival_2.40-1 [9] XML_3.98-1.5 foreign_0.8-67 DBI_0.6-1 BiocParallel_1.6.6 [13] plyr_1.8.4 stringr_1.2.0 zlibbioc_1.18.0 munsell_0.4.3 [17] gtable_0.2.0 caTools_1.17.1 htmlwidgets_0.8 memoise_1.0.0 [21] labeling_0.3 latticeExtra_0.6-28 knitr_1.15.1 geneplotter_1.50.0 [25] AnnotationDbi_1.34.4 htmlTable_1.9 Rcpp_0.12.9 KernSmooth_2.23-15 [29] acepack_1.4.1 xtable_1.8-2 backports_1.0.5 scales_0.4.1 [33] checkmate_1.8.2 gdata_2.17.0 Hmisc_4.0-2 annotate_1.50.1 [37] XVector_0.12.1 gridExtra_2.2.1 digest_0.6.12 stringi_1.1.2 [41] grid_3.3.2 tools_3.3.2 bitops_1.0-6 magrittr_1.5 [45] lazyeval_0.2.0 RCurl_1.95-4.8 tibble_1.2 RSQLite_1.1-2 [49] Formula_1.2-1 cluster_2.0.6 Matrix_1.2-8 data.table_1.10.0 [53] assertthat_0.1 rpart_4.1-10 nnet_7.3-12
Can you give us more details to understand the problem you are facing?
Gruop A express GFP and Group B express my target genes. So I want to understand the effect of overexpression of my gene on my transcriptome.
I know are overexpressed and also my count demonstate are overexpressed but the fold change are not close with my ratio calclulate from the counts. Is it normal?