Hello,
I have been using DESeq2 to analyze small RNA expression across several treatments. I am surprised to find in my results some sequences that have very high variance listed as significantly differentially expressed. I was under the impression that one of DESeq2's strengths is dealing with variance. Is there an additional command I need to run?
An example of normalized expression values for 4 replicates that come up differentially expressed from another treatment:
Treatment A)
8.26 | 15,824.27 |
9.21 |
26,085.66 |
Treatment B)
3.90 | 8.61 | 12.48 | 7.83 |
I am running the following:
dds.4dpd <- DESeq(dds.4dpd, test="LRT", full=~treatment, reduced=~1)
<font face="sans-serif, Arial, Verdana, Trebuchet MS">
</font>res4_1 <- results(dds.4dpd, name="treatment_E_vs_A")
res4_1<-subset(res4_1, padj<0.01)
res4_1a<-subset(res4_1, log2FoldChange>2)
res4_1b<-subset(res4_1, log2FoldChange< -2)
res4_1full <-rbind(res4_1b, res4_1a)
res4_1_final <-subset(res4_1full, baseMean>25)