Differential Expression Analysis
1
@paulelliot1994-12566
Last seen 6.5 years ago
If it's not too much trouble, can someone tell me as to how to perform differential expression analysis on this Illumina microarray data that I got from GEO dataset (GSE48624) and get the list of upregulated and downregulated genes.Thank You !
differential gene expression
microarray
lumi
illumina
• 1.7k views
@james-w-macdonald-5106
Last seen 3 days ago
United States
> library(GEOquery)
> library(limma)
> z <- getGEO("GSE48624")[[1]]
<snip>
> names(pData(z))
[1] "title" "geo_accession"
[3] "status" "submission_date"
[5] "last_update_date" "type"
[7] "channel_count" "source_name_ch1"
[9] "organism_ch1" "characteristics_ch1"
[11] "characteristics_ch1.1" "characteristics_ch1.2"
[13] "molecule_ch1" "extract_protocol_ch1"
[15] "label_ch1" "label_protocol_ch1"
[17] "taxid_ch1" "hyb_protocol"
[19] "scan_protocol" "description"
[21] "data_processing" "platform_id"
[23] "contact_name" "contact_email"
[25] "contact_phone" "contact_department"
[27] "contact_institute" "contact_address"
[29] "contact_city" "contact_zip/postal_code"
[31] "contact_country" "supplementary_file"
[33] "data_row_count"
## What are the characteristics of these samples?
> apply(pData(z)[,10:12], 2, table)
$characteristics_ch1
tissue: peripheral blood
96
$characteristics_ch1.1
ethnicity: Finnish
96
$characteristics_ch1.2
treatment: baseline treatment: music
47 49
## the only phenotype that differs is the music/baseline treatment
## subset the featureData to something tractable - most of this stuff isn't of interest
> names(fData(z))
[1] "ID" "Species" "Source"
[4] "Search_Key" "Transcript" "ILMN_Gene"
[7] "Source_Reference_ID" "RefSeq_ID" "Unigene_ID"
[10] "Entrez_Gene_ID" "GI" "Accession"
[13] "Symbol" "Protein_Product" "Probe_Id"
[16] "Array_Address_Id" "Probe_Type" "Probe_Start"
[19] "SEQUENCE" "Chromosome" "Probe_Chr_Orientation"
[22] "Probe_Coordinates" "Cytoband" "Definition"
[25] "Ontology_Component" "Ontology_Process" "Ontology_Function"
[28] "Synonyms" "Obsolete_Probe_Id" "GB_ACC"
> fData(z) <- fData(z)[,c(1,10,13)]
## fit model
> design <- model.matrix(~pData(z)[,12])
> fit <- lmFit(z, design)
> fit2 <- eBayes(fit)
> topTable(fit2,2)
ID Entrez_Gene_ID Symbol logFC AveExpr
ILMN_3236932 ILMN_3236932 353133 LCE1C -0.14815313 6.721839
ILMN_3239103 ILMN_3239103 340357 LOC340357 -0.17065860 7.381326
ILMN_1721415 ILMN_1721415 9425 CDYL 0.09895831 6.055042
ILMN_1812702 ILMN_1812702 6495 SIX1 0.09901370 6.172894
ILMN_1675433 ILMN_1675433 646914 LOC646914 0.13058373 7.080659
ILMN_1693001 ILMN_1693001 642607 LOC642607 0.12772460 6.874270
ILMN_1681221 ILMN_1681221 84904 C9orf100 -0.13552653 6.986433
ILMN_1731707 ILMN_1731707 441601 LOC441601 -0.14621298 6.817454
ILMN_1853705 ILMN_1853705 NA 0.14548676 6.773012
ILMN_1787540 ILMN_1787540 122183 FLJ40296 -0.12145411 6.844140
t P.Value adj.P.Val B
ILMN_3236932 -4.009277 0.0001169953 0.9997305 0.79210743
ILMN_3239103 -3.996187 0.0001227126 0.9997305 0.75411573
ILMN_1721415 3.911712 0.0001665612 0.9997305 0.51099215
ILMN_1812702 3.746906 0.0002986704 0.9997305 0.04713268
ILMN_1675433 3.657310 0.0004074674 0.9997305 -0.19905602
ILMN_1693001 3.621101 0.0004613228 0.9997305 -0.29732324
ILMN_1681221 -3.599539 0.0004965258 0.9997305 -0.35550123
ILMN_1731707 -3.591168 0.0005108654 0.9997305 -0.37801822
ILMN_1853705 3.584049 0.0005233669 0.9997305 -0.39713584
ILMN_1787540 -3.529596 0.0006290267 0.9997305 -0.54244947
>
There's no evidence to indicate that listening to classical music for 20 minutes has an effect on the expression of any genes in white blood cells.
Login before adding your answer.
Traffic: 613 users visited in the last hour