Unfortunately you did not show how you generated your input data (the object enrichment
), nor did you show the output from sessionInfo()
.
To me it seems you are using an old version of R/Bioconductor
.
Anyway, using the current version of Bioconductor with the example dataset:
> library(clusterProfiler)
> library(org.Hs.eg.db)
> library(enrichplot)
>
>
> ## example list of genes
> data(geneList, package="DOSE")
> genes <- names(geneList)[abs(geneList) > 2]
>
> res <- enrichKEGG(gene = genes,
+ organism = "hsa",
+ keyType = "kegg",
+ pvalueCutoff = 0.05,
+ pAdjustMethod = "BH",
+ minGSSize = 10,
+ maxGSSize = 500)
>
> ## to increase readability, convert entrezid into symbols
> ## also calculate pairwise similarities (is in essence only applicable
> ## to GO terms, but just to be sure
>
> res <- setReadable(res, OrgDb = org.Hs.eg.db, keyType="ENTREZID")
> res <- pairwise_termsim(res)
>
> ## cnetplot
> p1 <- cnetplot(
+ res,
+ layout = igraph::layout_with_kk,
+ showCategory = 5,
+ color_category = "#E5C494",
+ size_category = 1,
+ color_item = "#B3B3B3",
+ size_item = 1,
+ color_edge = "grey",
+ size_edge = 0.5,
+ node_label = "all",
+ foldChange = NULL,
+ hilight_alpha = 0.3,
+ )
>
> print(p1)
>

> packageVersion("clusterProfiler")
[1] '4.14.6'
> packageVersion("enrichplot")
[1] '1.26.6'
>
>
>
> BiocManager::version()
[1] '3.20'
>
> sessionInfo()
R version 4.4.2 (2024-10-31 ucrt)
Platform: x86_64-w64-mingw32/x64
Running under: Windows 10 x64 (build 19042)
Matrix products: default
locale:
[1] LC_COLLATE=English_United States.utf8
[2] LC_CTYPE=English_United States.utf8
[3] LC_MONETARY=English_United States.utf8
[4] LC_NUMERIC=C
[5] LC_TIME=English_United States.utf8
time zone: Europe/Amsterdam
tzcode source: internal
attached base packages:
[1] stats4 stats graphics grDevices utils datasets methods
[8] base
other attached packages:
[1] enrichplot_1.26.6 clusterProfiler_4.14.6 org.Hs.eg.db_3.20.0
[4] AnnotationDbi_1.68.0 IRanges_2.40.1 S4Vectors_0.44.0
[7] Biobase_2.66.0 BiocGenerics_0.52.0
loaded via a namespace (and not attached):
[1] tidyselect_1.2.1 dplyr_1.1.4 farver_2.1.2
[4] blob_1.2.4 R.utils_2.13.0 Biostrings_2.74.1
[7] lazyeval_0.2.2 fastmap_1.2.0 digest_0.6.37
[10] lifecycle_1.0.4 KEGGREST_1.46.0 tidytree_0.4.6
[13] RSQLite_2.3.9 magrittr_2.0.3 compiler_4.4.2
[16] rlang_1.1.5 tools_4.4.2 igraph_2.1.4
[19] data.table_1.17.0 ggtangle_0.0.6 labeling_0.4.3
[22] bit_4.6.0 gson_0.1.0 plyr_1.8.9
[25] RColorBrewer_1.1-3 aplot_0.2.5 BiocParallel_1.40.0
[28] withr_3.0.2 purrr_1.0.4 R.oo_1.27.0
[31] grid_4.4.2 GOSemSim_2.32.0 colorspace_2.1-1
[34] GO.db_3.20.0 ggplot2_3.5.1 scales_1.3.0
[37] cli_3.6.4 crayon_1.5.3 treeio_1.30.0
[40] generics_0.1.3 ggtree_3.14.0 httr_1.4.7
[43] reshape2_1.4.4 DBI_1.2.3 qvalue_2.38.0
[46] ape_5.8-1 cachem_1.1.0 DOSE_4.0.0
[49] stringr_1.5.1 zlibbioc_1.52.0 splines_4.4.2
[52] parallel_4.4.2 ggplotify_0.1.2 XVector_0.46.0
[55] yulab.utils_0.2.0 vctrs_0.6.5 Matrix_1.7-3
[58] jsonlite_1.9.1 gridGraphics_0.5-1 patchwork_1.3.0
[61] bit64_4.6.0-1 ggrepel_0.9.6 tidyr_1.3.1
[64] glue_1.8.0 codetools_0.2-20 cowplot_1.1.3
[67] stringi_1.8.4 gtable_0.3.6 GenomeInfoDb_1.42.3
[70] UCSC.utils_1.2.0 munsell_0.5.1 tibble_3.2.1
[73] pillar_1.10.1 fgsea_1.32.4 GenomeInfoDbData_1.2.13
[76] R6_2.6.1 lattice_0.22-6 R.methodsS3_1.8.2
[79] png_0.1-8 memoise_2.0.1 ggfun_0.1.8
[82] Rcpp_1.0.14 fastmatch_1.1-6 nlme_3.1-167
[85] fs_1.6.5 pkgconfig_2.0.3
>