I am running CleanUpRNAseq on tomato RNAseq data prepared through ribodepletion: however, the ensembl tomato GTF file does not include mitochondria or chloroplast annotations.
The following code works fine for me, except the resulting saf_list does not include a data frame for the organelle annotations:
bam_file <- file.path("../star_salmon/32_13_1_2.markdup.sorted.bam")
saf_list <- get_saf(
ensdb_sqlite = sl_ensdb,
bamfile = bam_file,
##mitochondrial_genome = "MT" ##commented out because there are no annotations for this in the GTF file
)
This causes an issue in generating the counts list in the following chunk:
## featurecounts
capture.output({counts_list <- summarize_reads(
SummarizedCounts = sc,
saf_list = saf_list,
gtf = gtf,
threads = 16,
verbose = TRUE
)}, file = tempfile())
Error in summarize_reads(SummarizedCounts = sc, saf_list = saf_list, gtf = gtf, :
A valid SAF list for gene, exon, intergenic region,intronic region, rRNA genes, and mitochondrion is needed
Is it possible to run CleanUpRNAseq without annotation data associated with organelles?
# Session info
sessionInfo( )
[1] RColorBrewer_1.1-3 rstudioapi_0.17.1 jsonlite_1.8.9 tximport_1.34.0
[5] magrittr_2.0.3 farver_2.1.2 rmarkdown_2.29 fs_1.6.5
[9] BiocIO_1.16.0 zlibbioc_1.52.0 vctrs_0.6.5 memoise_2.0.1
[13] Rsamtools_2.22.0 RCurl_1.98-1.16 base64enc_0.1-3 htmltools_0.5.8.1
[17] S4Arrays_1.6.0 curl_5.2.1 gridGraphics_0.5-1 SparseArray_1.6.0
[21] Formula_1.2-5 KernSmooth_2.23-24 htmlwidgets_1.6.4 plyr_1.8.9
[25] cachem_1.1.0 GenomicAlignments_1.42.0 lifecycle_1.0.4 pkgconfig_2.0.3
[29] Matrix_1.7-1 R6_2.5.1 fastmap_1.2.0 GenomeInfoDbData_1.2.13
[33] MatrixGenerics_1.18.0 digest_0.6.37 colorspace_2.1-1 DESeq2_1.46.0
[37] Hmisc_5.2-0 RSQLite_2.3.7 fansi_1.0.6 httr_1.4.7
[41] abind_1.4-8 mgcv_1.9-1 compiler_4.4.1 bit64_4.5.2
[45] htmlTable_2.4.3 backports_1.5.0 BiocParallel_1.40.0 DBI_1.2.3
[49] DelayedArray_0.32.0 rjson_0.2.23 tools_4.4.1 foreign_0.8-87
[53] nnet_7.3-19 glue_1.8.0 restfulr_0.0.15 nlme_3.1-166
[57] grid_4.4.1 checkmate_2.3.2 cluster_2.1.6 reshape2_1.4.4
[61] generics_0.1.3 sva_3.54.0 gtable_0.3.6 BSgenome_1.74.0
[65] qsmooth_1.22.0 data.table_1.16.2 utf8_1.2.4 XVector_0.46.0
[69] ggrepel_0.9.6 pillar_1.9.0 stringr_1.5.1 yulab.utils_0.1.8
[73] limma_3.62.1 genefilter_1.88.0 splines_4.4.1 dplyr_1.1.4
[77] lattice_0.22-6 survival_3.7-0 rtracklayer_1.66.0 bit_4.5.0
[81] annotate_1.84.0 tidyselect_1.2.1 locfit_1.5-9.10 Biostrings_2.74.0
[85] knitr_1.49 gridExtra_2.3 ProtGenerics_1.38.0 edgeR_4.4.0
[89] SummarizedExperiment_1.36.0 xfun_0.49 statmod_1.5.0 matrixStats_1.4.1
[93] pheatmap_1.0.12 stringi_1.8.4 UCSC.utils_1.2.0 lazyeval_0.2.2
[97] yaml_2.3.10 evaluate_1.0.1 codetools_0.2-20 tibble_3.2.1
[101] cli_3.6.3 rpart_4.1.23 xtable_1.8-4 munsell_0.5.1
[105] Rsubread_2.20.0 Rcpp_1.0.13-1 png_0.1-8 XML_3.99-0.17
[109] parallel_4.4.1 ggplot2_3.5.1 blob_1.2.4 bitops_1.0-9
[113] scales_1.3.0 crayon_1.5.3 rlang_1.1.4 KEGGREST_1.46.0
@haibol2017-23658 make sure you have the valid version bump in the description on our git repository in order for the new version to propagate
Thank you for your reminder. I did forget that, but I just bumped the version to 1.1.1.
The updated version worked well on my data. Thank you!