Plot PCA with ellipses using ggplot
1
0
Entering edit mode
robledoj13 • 0
@083cf582
Last seen 5 months ago
United States

Hello,

I am trying to add ellipses to each experimental group in an RNASeq data using DESeq2. In this RNASeq experiment there are 4 genotypes and 2 treatments. I transformed my data using variance stabilizing transformation (vst) as shown in the code below. I group my data on the PCA plot using Genotype(shape) and Diet(color).

PCA plot I exported PCA1

# Constructing DESeqDataSet Object
rna_exp <- DESeqDataSetFromHTSeqCount(sampleTable = sampledesc, directory = "star", design = ~ Genotype_Diet)
# Fit DESeq2 statistical model
rna_exp2 <- DESeq(rna_exp)

# vst transformation
vsd <- vst(rna_exp2)

# calculate pcaData
pcaData <- plotPCA(vsd, intgroup= c("Diet", "Genotype"), returnData=TRUE)
percentVar <- round(100 * attr(pcaData, "percentVar"))
pcaData
#                                                PC1         PC2             group    Diet  Genotype                         name
# Genotype1_Control_1                    -18.9157077  -2.8444874           Control:Genotype1    Control        Genotype1                    Genotype1_Control_1
# Genotype1_Control_2                    -20.9522176  -2.2563604           Control:Genotype1    Control        Genotype1                    Genotype1_Control_2
# Genotype1_Control_3                    -29.0537285   7.4214088           Control:Genotype1    Control        Genotype1                    Genotype1_Control_3
# Genotype1_High_Fat_1                 -21.3166182  14.4793876        High_Fat:Genotype1 High_Fat        Genotype1                 Genotype1_High_Fat_1
# Genotype1_High_Fat_2                 -15.5327726  11.5241870        High_Fat:Genotype1 High_Fat        Genotype1                 Genotype1_High_Fat_2
# Genotype1_High_Fat_3                 -23.3775377  15.2455884        High_Fat:Genotype1 High_Fat        Genotype1                 Genotype1_High_Fat_3
# Genotype2_Control_1              28.8351502  12.7642340         Control:Genotype1    Control      Genotype1             Genotype2_Control_1
# Genotype2_Control_2              26.0118887  12.8089745         Control:Genotype1    Control      Genotype1             Genotype2_Control_2
# Genotype2_Control_3              30.9264450  12.4476286         Control:Genotype1    Control      Genotype1             Genotype2_Control_3
# Genotype2_High_Fat_1           55.2383247   6.6614633      High_Fat:Genotype1 High_Fat      Genotype1          Genotype2_High_Fat_1
# Genotype2_High_Fat_2           61.7716660   0.1567968      High_Fat:Genotype1 High_Fat      Genotype1          Genotype2_High_Fat_2
# Genotype2_High_Fat_3           56.7036605   1.5576229      High_Fat:Genotype1 High_Fat      Genotype1          Genotype2_High_Fat_3
# Genotype3_Control_1             -23.7736534  -4.3032736        Control:Genotype3    Control     Genotype3             Genotype3_Control_1
# Genotype3_Control_2             -28.7286469   0.1039441        Control:Genotype3    Control     Genotype3             Genotype3_Control_2
# Genotype3_Control_3             -24.7687536  -5.3528158        Control:Genotype3    Control     Genotype3             Genotype3_Control_3
# Genotype3_High_Fat_1          -23.0104137   7.4764965     High_Fat:Genotype3 High_Fat     Genotype3          Genotype3_High_Fat_1
# Genotype3_High_Fat_2          -14.0798338   2.6576430     High_Fat:Genotype3 High_Fat     Genotype3          Genotype3_High_Fat_2
# Genotype3_High_Fat_3          -16.7878296   4.3933782     High_Fat:Genotype3 High_Fat     Genotype3          Genotype3_High_Fat_3
# Genotype4_Control_1     13.0572333 -32.6317159    Control:Genotype4    Control Genotype4    Genotype4_Control_1
# Genotype4_Control_2     10.4969905 -29.1774459    Control:Genotype4    Control Genotype4    Genotype4_Control_2
# Genotype4_Control_3     -8.5982418 -16.0843930    Control:Genotype4    Control Genotype4    Genotype4_Control_3
# Genotype4_High_Fat_1  -3.5673468  -8.2234753 High_Fat:Genotype4 High_Fat Genotype4 Genotype4_High_Fat_1
# Genotype4_High_Fat_2 -10.4241364  -2.0534517 High_Fat:Genotype4 High_Fat Genotype4 Genotype4_High_Fat_2
# Genotype4_High_Fat_3  -0.1539208  -6.7713347 High_Fat:Genotype4 High_Fat Genotype4 Genotype4_High_Fat_3

# PCA plot
png("PCA.png")
ggplot(pcaData, aes(PC1, PC2, color= Diet, shape= Genotype)) +
  geom_point(size=3) +
  xlab(paste0("PC1: ",percentVar[1],"% variance")) +
  ylab(paste0("PC2: ",percentVar[2],"% variance")) + 
  coord_fixed() + scale_colour_manual(values = c(OP50 = "black", Glucose = "green2")) + stat_ellipse(type = "euclid")
dev.off()

Warning message: I am unable to add ellipse because there are "too few points to calculate an ellipse". Removed 8 rows containing missing values or values outside the scale range (geom_path()).

Question: Is there an alternative approach I should take to add ellipses to each genotype:Diet using the same color scheme I have?

I am interested in producing a pcaplot as shown below:

PCA2

Thank you for any advice provided.

-robledoj13

DESeq2 ggplot PCA • 1.4k views
ADD COMMENT
2
Entering edit mode
ATpoint ★ 4.6k
@atpoint-13662
Last seen 6 days ago
Germany

This is rather a ggplot than DESeq2 question, please see for example https://stackoverflow.com/questions/49931681/error-too-few-points-to-calculate-an-ellipse-with-3-points-r and dig forward from here. For the future, it is easiest to help when you provide the actual data, for example the PCA data as dput().

ADD COMMENT
0
Entering edit mode

Thank you for your the help @ATpoint.

ADD REPLY

Login before adding your answer.

Traffic: 612 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6