Error: grouping factors must have > 1 sampled level
0
0
Entering edit mode
Andrew • 0
@44893b86
Last seen 10 months ago
United Kingdom

I am trying to run MAST on a subset of single cell types, but I get the following error: Error: grouping factors must have > 1 sampled level

Grouping factors are:

group   ngeneson    replicate
neuroblastoma.Bridge    -0.791254569558456  jansky
neuroblastoma.Bridge    -2.1203581896722    jansky
neuroblastoma.Bridge    -0.865093659564775  jansky
neuroblastoma.Bridge    -0.748655094554811  jansky
neuroblastoma.Bridge    -2.01953943216357   jansky
neuroblastoma.Bridge    -1.2825685146005    jansky
neuroblastoma.Bridge    -1.00141197957644   jansky
neuroblastoma.Bridge    -1.70998324713708   jansky
neuroblastoma.Bridge    -1.71850314213781   jansky
neuroblastoma.Bridge    -0.769954832056634  jansky
neuroblastoma.Bridge    -2.02521936216406   jansky
neuroblastoma.Bridge    -0.911953082068786  jansky
neuroblastoma.Bridge    -0.781314692057606  jansky
neuroblastoma.Bridge    -0.792674552058578  jansky
neuroblastoma.Bridge    -0.805454394559671  jansky
neuroblastoma.Bridge    0.309231868035723   jansky
neuroblastoma.Bridge    -2.18141743717743   jansky
neuroblastoma.Bridge    0.381650975541921   jansky
neuroblastoma.Bridge    -1.16612994959054   jansky
neuroblastoma.Bridge    -1.04827140208045   jansky
neuroblastoma.Bridge    3.0455381457699 jansky
neuroblastoma.Bridge    -1.50408578461946   jansky
neuroblastoma.Bridge    -0.585357107040836  jansky
neuroblastoma.Bridge    -0.588197072041079  jansky

et. cetera, with more than 1 level for each.


find_de_MAST_RE <- function(adata_){
    # create a MAST object
    sca <- SceToSingleCellAssay(adata_, class = "SingleCellAssay")
    print("Dimensions before subsetting:")
    print(dim(sca))
    print("")
    # keep genes that are expressed in more than 10% of all cells
    sca <- sca[freq(sca)>0.1,]
    print("Dimensions after subsetting:")
    print(dim(sca))
    print("")
    # add a column to the data which contains scaled number of genes that are expressed in each cell
    cdr2 <- colSums(assay(sca)>0)
    colData(sca)$ngeneson <- scale(cdr2)
    # store the columns that we are interested in as factors
    label <- factor(colData(sca)$condition)
    # set the reference level
    label <- relevel(label,"control")
    colData(sca)$label <- label
    #celltype <- factor(colData(sca)$auto_manual_merged_annotation)
    #colData(sca)$celltype <- celltype
    # same for donors (which we need to model random effects)
    replicate <- factor(colData(sca)$source)
    colData(sca)$replicate <- replicate
    # create a group per condition-celltype combination
    colData(sca)$group <- paste0(colData(adata_)$condition, ".", colData(adata_)$auto_manual_merged_annotation)
    colData(sca)$group <- factor(colData(sca)$group)

    #selected_cols <- c("group", "ngeneson", "replicate")
    #selected_data <- colData(sca)[, selected_cols]
    #print(selected_data)
    #write.csv(selected_data, file = "/project/data/nb24/Control_Dataset_Analysis/test.csv", row.names = FALSE)
    print(levels(colData(sca)$label))
    print(levels(colData(sca)$replicate))
    print(levels(colData(sca)$ngeneson))
    print(levels(colData(sca)$group))

    #print(table(colData(sca)$group, colData(sca)$ngeneson))

    # define and fit the model
    zlmCond <- zlm(formula = ~ngeneson + group + (1 | replicate), 
                   sca=sca, 
                   method='glmer', 
                   ebayes=F, 
                   strictConvergence=F,
                   fitArgsD=list(nAGQ = 0)) # to speed up calculations
    print("done")

    # perform likelihood-ratio test for the condition that we are interested in    
    summaryCond <- summary(zlmCond, doLRT='neuroblastoma.Bridge')
    # get the table with log-fold changes and p-values
    summaryDt <- summaryCond$datatable
    result <- merge(summaryDt[contrast=='neuroblastoma.Bridge' & component=='H',.(primerid, `Pr(>Chisq)`)], # p-values
                     summaryDt[contrast=='neuroblastoma.Bridge' & component=='logFC', .(primerid, coef)],
                     by='primerid') # logFC coefficients
    # MAST uses natural logarithm so we convert the coefficients to log2 base to be comparable to edgeR
    result[,coef:=result[,coef]/log(2)]
    # do multiple testing correction
    result[,FDR:=p.adjust(`Pr(>Chisq)`, 'fdr')]
    result = result[result$FDR<0.01,, drop=F]

    result <- stats::na.omit(as.data.frame(result))
    return(result)
}
Mast mastR MAST • 669 views
ADD COMMENT

Login before adding your answer.

Traffic: 487 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6