After obtaining the gene-level expression for the CCLE project using recount3
, I am trying to obtain the transcript-level data.
As far as I can tell this is not possible with recount3
but it should be possible with recount
:
library("recount")
download_study("SRP009615", type = "rse-exon")
load(file.path("SRP009615", "rse_exon.Rdata"))
unlink("SRP009615", recursive = TRUE)
head(assay(rse_exon))
however CCLE doens't seem to have been processed in recount
download_study("SRP186687", type = "rse-tx")
Error in download_study("SRP186687", type = "rse-tx") :
Invalid 'project' argument. There's no such 'project' in the recount_url data.frame.
project_info <- abstract_search("SRP186687")
[1] number_samples species abstract project
<0 rows> (or 0-length row.names)
project_info <- abstract_search("CCLE")
[1] number_samples species abstract project
<0 rows> (or 0-length row.names)
So my question is:
How can the transcript level CCLE data be obtained either with recount
, recount3
or any other way?
Cheers
sessionInfo( )
R version 4.3.2 (2023-10-31)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 20.04.6 LTS
Matrix products: default
BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.9.0
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.9.0
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C LC_TIME=de_DE.UTF-8 LC_COLLATE=en_US.UTF-8 LC_MONETARY=de_DE.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=de_DE.UTF-8 LC_NAME=C LC_ADDRESS=C LC_TELEPHONE=C LC_MEASUREMENT=de_DE.UTF-8 LC_IDENTIFICATION=C
time zone: Europe/Berlin
tzcode source: system (glibc)
attached base packages:
[1] stats4 stats graphics grDevices utils datasets methods base
other attached packages:
[1] recount_1.28.0 recount3_1.12.0 SummarizedExperiment_1.32.0 Biobase_2.62.0 GenomicRanges_1.54.1 GenomeInfoDb_1.38.5
[7] IRanges_2.36.0 S4Vectors_0.40.2 BiocGenerics_0.48.1 MatrixGenerics_1.14.0 matrixStats_1.2.0 magrittr_2.0.3
[13] data.table_1.14.10
loaded via a namespace (and not attached):
[1] jsonlite_1.8.8 rstudioapi_0.15.0 GenomicFeatures_1.54.1 rmarkdown_2.25 BiocIO_1.12.0 zlibbioc_1.48.0 vctrs_0.6.5
[8] memoise_2.0.1 Rsamtools_2.18.0 RCurl_1.98-1.14 base64enc_0.1-3 htmltools_0.5.7 S4Arrays_1.2.0 progress_1.2.3
[15] curl_5.2.0 SparseArray_1.2.3 Formula_1.2-5 htmlwidgets_1.6.4 plyr_1.8.9 cachem_1.0.8 GenomicAlignments_1.38.2
[22] iterators_1.0.14 lifecycle_1.0.4 pkgconfig_2.0.3 Matrix_1.6-5 R6_2.5.1 fastmap_1.1.1 GenomeInfoDbData_1.2.11
[29] digest_0.6.34 colorspace_2.1-0 AnnotationDbi_1.64.1 Hmisc_5.1-1 RSQLite_2.3.5 filelock_1.0.3 fansi_1.0.6
[36] httr_1.4.7 abind_1.4-5 compiler_4.3.2 rngtools_1.5.2 downloader_0.4 bit64_4.0.5 htmlTable_2.4.2
[43] backports_1.4.1 BiocParallel_1.36.0 DBI_1.2.1 R.utils_2.12.3 biomaRt_2.58.0 rappdirs_0.3.3 DelayedArray_0.28.0
[50] sessioninfo_1.2.2 rjson_0.2.21 derfinderHelper_1.36.0 tools_4.3.2 foreign_0.8-85 rentrez_1.2.3 nnet_7.3-19
[57] R.oo_1.25.0 glue_1.7.0 restfulr_0.0.15 grid_4.3.2 checkmate_2.3.1 reshape2_1.4.4 derfinder_1.36.0
[64] cluster_2.1.4 generics_0.1.3 gtable_0.3.4 BSgenome_1.70.1 tzdb_0.4.0 R.methodsS3_1.8.2 tidyr_1.3.0
[71] hms_1.1.3 xml2_1.3.6 utf8_1.2.4 XVector_0.42.0 foreach_1.5.2 pillar_1.9.0 stringr_1.5.1
[78] limma_3.58.1 splines_4.3.2 dplyr_1.1.4 BiocFileCache_2.10.1 lattice_0.22-5 rtracklayer_1.62.0 bit_4.0.5
[85] GEOquery_2.70.0 tidyselect_1.2.0 locfit_1.5-9.8 Biostrings_2.70.1 knitr_1.45 gridExtra_2.3 xfun_0.41
[92] statmod_1.5.0 stringi_1.8.3 yaml_2.3.8 evaluate_0.23 codetools_0.2-19 GenomicFiles_1.38.0 qvalue_2.34.0
[99] tibble_3.2.1 cli_3.6.2 bumphunter_1.44.0 rpart_4.1.21 munsell_0.5.0 Rcpp_1.0.12 dbplyr_2.4.0
[106] png_0.1-8 XML_3.99-0.16.1 parallel_4.3.2 ggplot2_3.4.4 readr_2.1.5 blob_1.2.4 prettyunits_1.2.0
[113] doRNG_1.8.6 bitops_1.0-7 VariantAnnotation_1.48.1 scales_1.3.0 purrr_1.0.2 crayon_1.5.2 rlang_1.1.3
[120] KEGGREST_1.42.0