I have to analyze an RNA-seq dataset. Goal is to compare two groups - say case and control. The issue is that there is only one sample per group. In a normal situation , I would not proceed with the analysis as n=1 is not really a "group", its not statistically justifiable, results cannot be generalized.
But this data is on cell line from a real patient with a disease. I will circle back with the investigator to see if its possible to generate more data. But in the event that its not possible to get more data, would voom-limma be a good tool to try (with all the caveats mentioned above). Thanks.
Thank you so much for the feedback Gordon Smyth ! Since the results from one replicate may not be generalizable, I decided to calculate the ratio of case/control to generate a ratio equivalent of fold change, which I then used as ranking criteria for a GSEA analysis.
I first pre-filtered the RNA-seq to remove the lowly expressed genes, and for the remaining genes, input that along with the ratio into GSEA.
In my opinion, the edgeR code above will give a better ranking of genes in terms of likely biological significance than simply ranking by fold-change, depending on how you compute the fold-changes.
Also beware that pre-ranked GSEA is gives highly inflated signifance because it doesn't take into account inter-gene correlations.