I would like to process proprietary RNA-Seq data with the same version of the pipeline behind recount3 data (Monorail).
To do so, I downloaded the latest stable versions of recount-pump (v 1.1.3) and recount-unify (v 1.1.1), as suggested in the Monorail github repo.
Now, I would like to retrieve the version of the Monorail pipeline used to generate TCGA data available on Recount3 R package, so that I can process the proprietary data with the same Monorail pipeline version.
I have looked through the official reocunt3 documentation and Recount3 Bioconductor Vignettes, but could not find a way to retrieve the Monorail pipeline version.
Is it the Monorail pipeline version of recount3 R package data available?
Here is the code snippet I am using to download recount3 TCGA data :
library("recount3")
options(recount3_url = "https://recount-opendata.s3.amazonaws.com/recount3/release")
human_projects <- available_projects()
tcga_info = subset(
human_projects,
file_source == "tcga" & project_type == "data_sources"
)
rse_tcga <- create_rse(tcga_info)
Here is the output of sessionInfo():
> sessionInfo()
R version 4.2.2 (2022-10-31 ucrt)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 19044)
Matrix products: default
locale:
[1] LC_COLLATE=Danish_Denmark.1252 LC_CTYPE=Danish_Denmark.1252 LC_MONETARY=Danish_Denmark.1252 LC_NUMERIC=C
[5] LC_TIME=Danish_Denmark.1252
attached base packages:
[1] stats4 stats graphics grDevices utils datasets methods base
other attached packages:
[1] recount3_1.6.0 SummarizedExperiment_1.26.1 GenomicRanges_1.48.0 GenomeInfoDb_1.32.4
[5] IRanges_2.30.1 MatrixGenerics_1.8.1 matrixStats_1.0.0 data.table_1.14.8
[9] msigdbr_7.5.1 fgsea_1.22.0 ggrepel_0.9.3 pheatmap_1.0.12
[13] Rtsne_0.16 umap_0.2.10.0 cowplot_1.1.1 reshape2_1.4.4
[17] scales_1.2.1 knitr_1.43 GeoMxWorkflows_1.2.0 GeomxTools_3.0.1
[21] NanoStringNCTools_1.4.0 ggplot2_3.4.2 S4Vectors_0.34.0 Biobase_2.56.0
[25] BiocGenerics_0.42.0
loaded via a namespace (and not attached):
[1] readxl_1.4.3 uuid_1.1-0 snow_0.4-4 fastmatch_1.1-3 BiocFileCache_2.4.0
[6] systemfonts_1.0.4 plyr_1.8.8 sp_2.0-0 splines_4.2.2 BiocParallel_1.30.4
[11] listenv_0.9.0 digest_0.6.33 htmltools_0.5.5 lmerTest_3.1-3 fansi_1.0.4
[16] magrittr_2.0.3 memoise_2.0.1 globals_0.16.2 Biostrings_2.64.1 R.utils_2.12.2
[21] askpass_1.1 colorspace_2.1-0 blob_1.2.4 rappdirs_0.3.3 xfun_0.39
[26] dplyr_1.1.2 crayon_1.5.2 RCurl_1.98-1.12 jsonlite_1.8.7 EnvStats_2.8.0
[31] lme4_1.1-34 progressr_0.13.0 glue_1.6.2 polyclip_1.10-4 gtable_0.3.3
[36] zlibbioc_1.42.0 XVector_0.36.0 DelayedArray_0.22.0 future.apply_1.11.0 DBI_1.1.3
[41] GGally_2.1.2 ggthemes_4.2.4 Rcpp_1.0.11 reticulate_1.30 bit_4.0.5
[46] htmlwidgets_1.6.2 httr_1.4.6 RColorBrewer_1.1-3 XML_3.99-0.14 pkgconfig_2.0.3
[51] reshape_0.8.9 R.methodsS3_1.8.2 farver_2.1.1 sass_0.4.7 dbplyr_2.3.3
[56] utf8_1.2.3 tidyselect_1.2.0 labeling_0.4.2 rlang_1.1.1 munsell_0.5.0
[61] cellranger_1.1.0 tools_4.2.2 cachem_1.0.8 cli_3.6.1 generics_0.1.3
[66] RSQLite_2.3.1 evaluate_0.21 stringr_1.5.0 fastmap_1.1.1 yaml_2.3.7
[71] outliers_0.15 babelgene_22.9 bit64_4.0.5 purrr_1.0.1 future_1.33.0
[76] nlme_3.1-162 R.oo_1.25.0 ggiraph_0.8.7 BiocStyle_2.24.0 compiler_4.2.2
[81] beeswarm_0.4.0 filelock_1.0.2 curl_5.0.1 png_0.1-8 tibble_3.2.1
[86] tweenr_2.0.2 bslib_0.5.0 stringi_1.7.12 RSpectra_0.16-1 lattice_0.21-8
[91] Matrix_1.5-5 nloptr_2.0.3 vctrs_0.6.3 pillar_1.9.0 lifecycle_1.0.3
[96] BiocManager_1.30.21.1 jquerylib_0.1.4 bitops_1.0-7 rtracklayer_1.56.1 BiocIO_1.6.0
[101] R6_2.5.1 gridExtra_2.3 vipor_0.4.5 parallelly_1.36.0 sessioninfo_1.2.2
[106] codetools_0.2-19 boot_1.3-28.1 MASS_7.3-60 openssl_2.1.0 rjson_0.2.21
[111] withr_2.5.0 SeuratObject_4.1.3 GenomicAlignments_1.32.1 Rsamtools_2.12.0 GenomeInfoDbData_1.2.8
[116] parallel_4.2.2 grid_4.2.2 minqa_1.2.5 rmarkdown_2.23 ggforce_0.4.1
[121] numDeriv_2016.8-1.1 ggbeeswarm_0.7.2 restfulr_0.0.15
Hi Chris, I just saw your post!
Thanks you so much, Lorenzo