TCGA counts to TPM from recount3 do not seem to right
1
0
Entering edit mode
tangming2005 ▴ 200
@tangming2005-6754
Last seen 11 weeks ago
United States

Hi, I am trying to subset 19 genes from the TCGA raw count table and convert the raw counts to TPM and get the median value of the genes across samples within the same cancer type and plot in a heatmap.

The results do not look right to me. e.g., MLSN should be high in MESO, FOLH1 (prostate-specific tumor antigen) should be high in PRAD

The code.

TAAs<- c("MSLN", "EGFR", "ERBB2", "CEACAM5", "NECTIN4", "EPCAM", "MUC16", "MUC1", "CD276",
         "FOLH1", "DLL3", "VTCN1", "PROM1", "PVR", "CLDN6", "MET", "FOLR1", "TNFRSF10B", "TACSTD2")
TCGAExprsAndPheno2 <- function(gene_vector, cancer_types = "all", expression_type = "TPM"){
  library(recount3)
  ## Get all possible projects
  all_proj <- available_projects()
  tcga_proj <- all_proj %>% filter(file_source == "tcga")
  if (cancer_types != "all") {
    tcga_proj <- tcga_proj[tcga_proj$project %in% cancer_types,]
  }
  final_tcga <- NULL
  for (tcga_ind in seq(nrow(tcga_proj))) {
    proj_info <- tcga_proj[tcga_ind, c("project", "organism", "project_home")]
    rse_gene_temp<- create_rse(proj_info)
    count_matrix <- rse_gene_temp@assays@data$raw_counts 
    ## Select gene ind
    if (!identical("all", gene_vector)) {
      gene_ind <- rse_gene_temp@rowRanges$gene_name %in% gene_vector
    } else {
      gene_ind <- seq(rse_gene_temp@rowRanges$gene_name)
    }

    if (expression_type == "TPM") {
      #### Creating TPM
      kilobase_length <- rse_gene_temp@rowRanges$bp_length
      reads_per_rpk <- count_matrix/kilobase_length
      per_mil_scale <- colSums(reads_per_rpk)/1000000
      tpm_matrix <- t(t(reads_per_rpk)/per_mil_scale)
      ## Make sure they match the ENSG and gene order
      exprs_vector <- tpm_matrix[gene_ind,]
    } else{
      #log2 normalize the count matrix
      total_reads<- colSums(count_matrix)
      normalized_counts<- log2(t(t(count_matrix)*10000000/total_reads) + 1)
      exprs_vector <- normalized_counts[gene_ind,]
    }
    tcga_data_frame <- rse_gene_temp@colData@listData |>
      as.data.frame()
    if (nrow(exprs_vector) > length(gene_vector)) {
      ind_vector <- rownames(exprs_vector)
    } else {
      ind_vector <- rse_gene_temp@rowRanges[gene_ind, ]$gene_name
      }
    tcga_data_frame[,ind_vector] <- exprs_vector
    tcga_data_frame <- select(tcga_data_frame, !!ind_vector, everything())
    final_tcga <- rbind(final_tcga, tcga_data_frame)
  }

  ## Group cancer data
  final_tcga_filt <- final_tcga %>%
    mutate(sample_type = case_when(
      tcga.cgc_sample_sample_type == "Additional - New Primary" ~ "cancer",
      tcga.cgc_sample_sample_type == "Additional Metastatic" ~ "metastatic",
      tcga.cgc_sample_sample_type == "Metastatic" ~ "metastatic",
      tcga.cgc_sample_sample_type == "Primary Blood Derived Cancer - Peripheral Blood " ~ "cancer",
      tcga.cgc_sample_sample_type == "Primary Tumor" ~ "cancer",
      tcga.cgc_sample_sample_type == "Recurrent Tumor" ~ "cancer",
      tcga.cgc_sample_sample_type == "Solid Tissue Normal" ~ "normal"

    ))
  if (startsWith(colnames(final_tcga_filt)[1], "ENSG")) {
    message("Multiple columns share gene names, returning ENSG")
  }
  return(final_tcga_filt)
}
tcga_TAA <- TCGAExprsAndPheno2(gene_vector = c(TAAs, "CD24"),cancer_type="all")
tcga_df<- tcga_TAA %>%
  select(any_of(TAAs), CD24, tcga.tcga_barcode, sample_type, study) %>%
  group_by(sample_type, study) %>%
  summarise(across(1:20, ~log2(.x+1))) %>%
  summarise(across(1:20, median)) %>%
  arrange(study) %>%
  filter(!is.na(sample_type)) 

tcga_df<- tcga_df %>%
  filter(sample_type == "cancer")
tcga_mat<- tcga_df[, -c(1,2)] %>% as.matrix()
rownames(tcga_mat)<- tcga_df %>% pull(study)
cell_fun = function(j, i, x, y, w, h, fill) {
    grid.rect(x = x, y = y, width = w, height = h, 
              gp = gpar(col = "black", fill = NA))
}

Heatmap(tcga_mat, cluster_columns = TRUE, cell_fun = cell_fun,
        name = "log2TPM")

recount3

I used a different count table from ExperimentHub and calculated the TPM, someone else uses the RSEM data from cbioportal and the results look right to me. I am wondering if there is any bug in my script for recount3 or if there is a data problem there.

ExperimentHub

The RSEM results

RSEM

The gist can be found at https://gist.github.com/crazyhottommy/042aa268bbc8c6a4067545600da10d24

Thanks a lot for your time.

Best, Tommy

recount3 TCGA RNASeq • 886 views
ADD COMMENT
0
Entering edit mode

something was wrong with the original code. I rewrite the code below and now the results make sense..

enter image description here ```{r}

BiocManager::install("recount3")

library(recount3) library(purrr) human_projects <- available_projects()

tcga_info = subset( human_projects, file_source == "tcga" & project_type == "data_sources" )

seq(nrow(tcga_info))

proj_info <- map(seq(nrow(tcga_info)), ~tcga_info[.x, ])

rse_tcga <- map(proj_info, ~create_rse(.x))


/Users/tommytang/Library/Caches/org.R-project.R/R/recount3
  does not exist, create directory? (yes/no): yes

```{r}
TAAs<- c("MSLN", "EGFR", "ERBB2", "CEACAM5", "NECTIN4", "EPCAM", "MUC16", "MUC1", "CD276", "FOLH1", "DLL3", "VTCN1", "PROM1", "PVR", "CLDN6", "MET", "FOLR1", "TNFRSF10B", "TACSTD2", "CD24")

#### Creating TPM
count2tpm<- function(rse){
        count_matrix <- rse@assays@data$raw_counts
        gene_length <- rse@rowRanges$bp_length
        reads_per_rpk <- count_matrix/gene_length
        per_mil_scale <- colSums(reads_per_rpk)/1000000
        tpm_matrix <- t(t(reads_per_rpk)/per_mil_scale)
         ## Make sure they match the ENSG and gene order
        gene_ind<-  rse@rowRanges$gene_name %in% TAAs 
        tpm_submatrix <- tpm_matrix[gene_ind,]
        rownames(tpm_submatrix)<- rse@rowRanges[gene_ind, ]$gene_name
        return(tpm_submatrix)
}


tpm_data<- map(rse_tcga, count2tpm)
metadata<- map(rse_tcga, ~.x@colData@listData %>% as.data.frame())

tpm_data2<- reduce(tpm_data, cbind)
metadata2<- reduce(metadata, rbind)
dim(tpm_data2)
dim(metadata2)
metadata2<- metadata2 %>%
        select(tcga.tcga_barcode, tcga.cgc_sample_sample_type, study) %>%
        mutate(sample_type = case_when(
                tcga.cgc_sample_sample_type == "Additional - New Primary" ~ "cancer",
                tcga.cgc_sample_sample_type == "Additional Metastatic" ~ "metastatic",
                tcga.cgc_sample_sample_type == "Metastatic" ~ "metastatic",
                tcga.cgc_sample_sample_type == "Primary Blood Derived Cancer - Peripheral Blood " ~ "cancer",
                tcga.cgc_sample_sample_type == "Primary Tumor" ~ "cancer",
                tcga.cgc_sample_sample_type == "Recurrent Tumor" ~ "cancer",
                tcga.cgc_sample_sample_type == "Solid Tissue Normal" ~ "normal"
    ))

final_df<- cbind(t(tpm_data2), metadata2)
library(ComplexHeatmap)
tcga_df<- final_df %>%
        filter(sample_type == "cancer") %>%
        group_by(sample_type, study) %>%
        summarise(across(1:20, ~log2(.x+1))) %>%
        summarise(across(1:20, median)) %>%
        arrange(study) %>%
        filter(!is.na(sample_type))

tcga_mat<- tcga_df[, -c(1,2)] %>% as.matrix()
rownames(tcga_mat)<- tcga_df %>% pull(study)

cell_fun = function(j, i, x, y, w, h, fill) {
    grid.rect(x = x, y = y, width = w, height = h, 
              gp = gpar(col = "black", fill = NA))
}

Heatmap(tcga_mat, cluster_columns = TRUE, cell_fun = cell_fun,
        name = "log2TPM")

You can also scale the expression for each gene across the cancer types

Heatmap(scale(tcga_mat), cluster_columns = TRUE, cell_fun = cell_fun,
        name = "scaled\nlog2TPM")
ADD REPLY
0
Entering edit mode
@lcolladotor
Last seen 1 day ago
United States

Thanks Ming for posting the solution to your own question. This place is indeed the best to ask questions about recount3, instead of Twitter or Bluesky. You could also post on the GitHub issues. In any case, in the future you might want to use the reprex package. It seems like you are not using the recount3 or recount functions for handling the raw_counts. See at https://research.libd.org/recount3/reference/transform_counts.html how you can compute TPM from raw_counts by using recount::getTPM(). Or https://research.libd.org/recount3/reference/compute_read_counts.html if you want to simply compute regular read counts.

Separately from recount3, Bioconductor / we recommend using rowRanges(rse) rather than the rse@rowRanges syntax, as the @ accesses slots from an S4 object in a way that could change in the future, whereas the rowRanges() accessor function is the recommended option for accessing that type of data.

Best, Leo

ADD COMMENT

Login before adding your answer.

Traffic: 730 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6