Hi,
I followed through the cufflink-cuffdiff-cummerbund pipeline for my analysis involving 2 groups (hyp-has 2 replicate, lyp-only one sample). Everything went well up to cuffdiff but when i tried plotting on cummerbund i end up with error everytime i try to plot (csScatter, csDensity, heatmap) only for the significant genes . Error says that: error:unable to find an inherited method for function 'csScatter' for signature '"data.frame". Im trying to understand where im going wrong, any help will be much appreciated.
Code should be placed in three backticks as shown below
> cuffdiff_data
CuffSet instance with:
2 samples
56245 genes
88197 isoforms
76870 TSS
40736 CDS
56245 promoters
76870 splicing
39033 relCDS
> sig_gene_diff <- subset(gene_diff, (significant == 'yes'))
> csScatter(sig_gene_diff, 'hyp', 'lyp')
# Error in (function (classes, fdef, mtable) : unable to find an inherited method for function 'csScatter' for signature '"data.frame"'
sessionInfo( )
R version 4.1.1 (2021-08-10)
Platform: x86_64-conda-linux-gnu (64-bit)
Running under: Ubuntu 20.04.5 LTS
Matrix products: default
BLAS/LAPACK: /home/combio7/anaconda3/lib/libopenblasp-r0.3.21.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=ms_MY.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=ms_MY.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=ms_MY.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=ms_MY.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] grid stats4 stats graphics grDevices utils datasets
[8] methods base
other attached packages:
[1] cummeRbund_2.36.0 Gviz_1.38.0 rtracklayer_1.54.0
[4] GenomicRanges_1.46.1 GenomeInfoDb_1.30.1 IRanges_2.28.0
[7] S4Vectors_0.32.4 fastcluster_1.2.3 reshape2_1.4.4
[10] ggplot2_3.4.2 RSQLite_2.3.0 BiocGenerics_0.40.0
loaded via a namespace (and not attached):
[1] ProtGenerics_1.26.0 bitops_1.0-7
[3] matrixStats_0.63.0 bit64_4.0.5
[5] filelock_1.0.2 RColorBrewer_1.1-3
[7] progress_1.2.2 httr_1.4.6
[9] tools_4.1.1 backports_1.4.1
[11] utf8_1.2.3 R6_2.5.1
[13] rpart_4.1.19 lazyeval_0.2.2
[15] Hmisc_5.1-0 DBI_1.1.3
[17] colorspace_2.1-0 nnet_7.3-19
[19] withr_2.5.0 tidyselect_1.2.0
[21] gridExtra_2.3 prettyunits_1.1.1
[23] bit_4.0.5 curl_4.3.3
[25] compiler_4.1.1 cli_3.6.1
[27] Biobase_2.54.0 htmlTable_2.4.1
[29] xml2_1.3.4 DelayedArray_0.20.0
[31] labeling_0.4.2 scales_1.2.1
[33] checkmate_2.2.0 rappdirs_0.3.3
[35] stringr_1.5.0 digest_0.6.31
[37] Rsamtools_2.10.0 foreign_0.8-84
[39] rmarkdown_2.21 XVector_0.34.0
[41] dichromat_2.0-0.1 htmltools_0.5.5
[43] base64enc_0.1-3 jpeg_0.1-10
[45] pkgconfig_2.0.3 MatrixGenerics_1.6.0
[47] ensembldb_2.18.1 dbplyr_2.3.2
[49] fastmap_1.1.1 BSgenome_1.62.0
[51] htmlwidgets_1.5.4 rlang_1.1.1
[53] rstudioapi_0.14 farver_2.1.1
[55] BiocIO_1.4.0 generics_0.1.3
[57] BiocParallel_1.28.3 dplyr_1.1.2
[59] VariantAnnotation_1.40.0 RCurl_1.98-1.12
[61] magrittr_2.0.3 GenomeInfoDbData_1.2.7
[63] Formula_1.2-5 Matrix_1.5-4.1
[65] Rcpp_1.0.10 munsell_0.5.0
[67] fansi_1.0.4 lifecycle_1.0.3
[69] stringi_1.7.12 yaml_2.3.7
[71] SummarizedExperiment_1.24.0 zlibbioc_1.40.0
[73] plyr_1.8.8 BiocFileCache_2.2.1
[75] blob_1.2.4 parallel_4.1.1
[77] crayon_1.5.2 lattice_0.21-8
[79] Biostrings_2.62.0 GenomicFeatures_1.46.5
[81] hms_1.1.3 KEGGREST_1.34.0
[83] knitr_1.43 pillar_1.9.0
[85] rjson_0.2.21 biomaRt_2.50.3
[87] XML_3.99-0.14 glue_1.6.2
[89] evaluate_0.21 biovizBase_1.42.0
[91] latticeExtra_0.6-29 data.table_1.14.8
[93] png_0.1-8 vctrs_0.6.2
[95] gtable_0.3.3 cachem_1.0.8
[97] xfun_0.39 AnnotationFilter_1.18.0
[99] restfulr_0.0.15 tibble_3.2.1
[101] GenomicAlignments_1.30.0 AnnotationDbi_1.56.2
[103] memoise_2.0.1 cluster_2.1.4