DESeq2 with nbinomGLM issues
1
0
Entering edit mode
@andrebolerbarros-16788
Last seen 6 months ago
Portugal

Hi everyone,

I was performing some DEGs and got this message:


Warning messages:
1: In nbinomGLM(x = x, Y = YNZ, size = size, weights = weightsNZ,  ... :
  the line search routine failed, possibly due to insufficient numeric precision

I've realized it was something related with the negative binomial model. But how can I solve this?

Thanks.

sessionInfo()
R version 4.3.0 (2023-04-21 ucrt)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 7 x64 (build 7601) Service Pack 1

Matrix products: default


locale:
[1] LC_COLLATE=Portuguese_Portugal.1252  LC_CTYPE=Portuguese_Portugal.1252   
[3] LC_MONETARY=Portuguese_Portugal.1252 LC_NUMERIC=C                        
[5] LC_TIME=Portuguese_Portugal.1252    

time zone: Europe/Lisbon
tzcode source: internal

attached base packages:
[1] stats4    stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] crayon_1.5.2                biomaRt_2.56.1              reshape2_1.4.4             
 [4] lubridate_1.9.2             forcats_1.0.0               stringr_1.5.0              
 [7] dplyr_1.1.2                 purrr_1.0.1                 readr_2.1.4                
[10] tidyr_1.3.0                 tibble_3.2.1                tidyverse_2.0.0            
[13] ggplot2_3.4.2               DESeq2_1.40.1               SummarizedExperiment_1.30.2
[16] Biobase_2.60.0              MatrixGenerics_1.12.2       matrixStats_1.0.0          
[19] GenomicRanges_1.52.0        GenomeInfoDb_1.36.0         IRanges_2.34.0             
[22] S4Vectors_0.38.1            BiocGenerics_0.46.0        

loaded via a namespace (and not attached):
  [1] rstudioapi_0.14         xlsx_0.6.5              magrittr_2.0.3         
  [4] farver_2.1.1            rmarkdown_2.22          fs_1.6.2               
  [7] zlibbioc_1.46.0         vctrs_0.6.3             memoise_2.0.1          
 [10] RCurl_1.98-1.12         usethis_2.2.0           htmltools_0.5.5        
 [13] S4Arrays_1.0.4          progress_1.2.2          curl_5.0.1             
 [16] cellranger_1.1.0        desc_1.4.2              htmlwidgets_1.6.2      
 [19] plyr_1.8.8              cachem_1.0.8            mime_0.12              
 [22] lifecycle_1.0.3         pkgconfig_2.0.3         Matrix_1.5-4.1         
 [25] R6_2.5.1                fastmap_1.1.1           GenomeInfoDbData_1.2.10
 [28] shiny_1.7.4             digest_0.6.31           numDeriv_2016.8-1.1    
 [31] colorspace_2.1-0        AnnotationDbi_1.62.1    ps_1.7.5               
 [34] rprojroot_2.0.3         pkgload_1.3.2           RSQLite_2.3.1          
 [37] filelock_1.0.2          labeling_0.4.2          fansi_1.0.4            
 [40] timechange_0.2.0        httr_1.4.6              compiler_4.3.0         
 [43] remotes_2.4.2           bit64_4.0.5             withr_2.5.0            
 [46] BiocParallel_1.34.2     DBI_1.1.3               pkgbuild_1.4.1         
 [49] MASS_7.3-60             rappdirs_0.3.3          DelayedArray_0.26.3    
 [52] sessioninfo_1.2.2       tools_4.3.0             httpuv_1.6.11          
 [55] glue_1.6.2              callr_3.7.3             promises_1.2.0.1       
 [58] grid_4.3.0              generics_0.1.3          gtable_0.3.3           
 [61] tzdb_0.4.0              hms_1.1.3               xml2_1.3.4             
 [64] utf8_1.2.3              XVector_0.40.0          pillar_1.9.0           
 [67] emdbook_1.3.12          later_1.3.1             rJava_1.0-6            
 [70] BiocFileCache_2.8.0     lattice_0.21-8          bit_4.0.5              
 [73] tidyselect_1.2.0        locfit_1.5-9.8          Biostrings_2.68.1      
 [76] miniUI_0.1.1.1          knitr_1.43              xfun_0.39              
 [79] devtools_2.4.5          stringi_1.7.12          yaml_2.3.7             
 [82] evaluate_0.21           codetools_0.2-19        xlsxjars_0.6.1         
 [85] bbmle_1.0.25            cli_3.6.1               xtable_1.8-4           
 [88] munsell_0.5.0           processx_3.8.1          Rcpp_1.0.10            
 [91] readxl_1.4.2            dbplyr_2.3.2            coda_0.19-4            
 [94] png_0.1-8               bdsmatrix_1.3-6         XML_3.99-0.14          
 [97] parallel_4.3.0          ellipsis_0.3.2          blob_1.2.4             
[100] prettyunits_1.1.1       profvis_0.3.8           urlchecker_1.0.1       
[103] bitops_1.0-7            mvtnorm_1.2-2           apeglm_1.22.1          
[106] scales_1.2.1            rlang_1.1.1             KEGGREST_1.40.0
DESeq2 • 1.1k views
ADD COMMENT
0
Entering edit mode

It's a warning, not an error. Please post a reprodicible example or at least full code. Can you make a MRE wirh makeExampleDESeqDataset()?

ADD REPLY
0
Entering edit mode

Unfourtunately, I wasn't able to replicate the error with the makeExampleDESeqDataset()

I am performing a cycle, in which I subset my dataset into organ:

design(dds_sub)<-~Organ
dds_sub<-DESeq(dds_sub)

Afterwards, I create another cycle to go through the comparisons:

for (j in comparisons) {
res1<-results(dds_sub,name =  j, alpha = 0.05)
res1<-lfcShrink(dds_sub,coef = j, type = "apeglm",res = res1)
}

And then I rearrange the levels to perform other comparisons of interest:

dds_sub$CellType<-relevel(dds_sub$CellType,i)
dds_sub<-nbinomWaldTest(dds_sub)
ADD REPLY
0
Entering edit mode
@mikelove
Last seen 10 hours ago
United States

Try removing low count genes.

ADD COMMENT

Login before adding your answer.

Traffic: 586 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6