Hi all, In the analysis of differentially expressed genes with Deseq2 I would like to understand :
- what is the difference between Value and Padj?
Would an analysis based only on Padj < 0.05 give a result with less FDR than an analysis with LFC > 1 and Padj < 0.05?
When I generate a list of genes by differential expression with these Padj and their LFC with the code below:
DMSO_WT_vs_GNF_WT =results(dds_ALL,contrast = c("genotype","TreatedWT","UntreatedWT"),lfcThreshold = 1,alpha = 0.05)
summary(DMSO_WT_vs_GNF_WT,rm.na = TRUE)
head(DMSO_WT_vs_GNF_WT)
treshlod <-DMSO_WT_vs_GNF_WT$padj < 0.05 & abs(DMSO_WT_vs_GNF_WT$log2FoldChange) > 1
treshlod
DMSO_WT_vs_GNF_WT$treshlod<-treshlod
DMSO_WT_vs_GNF_WT <- data.frame(subset(DMSO_WT_vs_GNF_WT,treshlod==TRUE))
DMSO_WT_vs_GNF_WT
write.csv(DMSO_WT_vs_GNF_WT,
file="Untreated_WT_vs_Treated_WT_.csv")
write.csv(rownames(DMSO_WT_vs_GNF_WT) ,
file="Untreated_WT_vs_Treated_WT_ID.csv",row.names = FALSE)
Result exemple : gene 1 LFC = 5
However I notice a slight difference for the same gene between the CFLs if I use the code with CFL > 2 instead of 1:
DMSO_WT_vs_GNF_WT =results(dds_ALL,contrast = c("genotype","TreatedWT","UntreatedWT"),lfcThreshold = 2,alpha = 0.05)
summary(DMSO_WT_vs_GNF_WT,rm.na = TRUE)
head(DMSO_WT_vs_GNF_WT)
treshlod <-DMSO_WT_vs_GNF_WT$padj < 0.05 & abs(DMSO_WT_vs_GNF_WT$log2FoldChange) > 2
treshlod
DMSO_WT_vs_GNF_WT$treshlod<-treshlod
DMSO_WT_vs_GNF_WT <- data.frame(subset(DMSO_WT_vs_GNF_WT,treshlod==TRUE))
DMSO_WT_vs_GNF_WT
write.csv(DMSO_WT_vs_GNF_WT,
file="Untreated_WT_vs_Treated_WT_.csv")
write.csv(rownames(DMSO_WT_vs_GNF_WT) ,
file="Untreated_WT_vs_Treated_WT_ID.csv",row.names = FALSE)
Result exemple : gene 1 LFC = 4.8
So how can I explain this slight difference?
Great !
Thank you.