cpg.annotate() in DMRcate error
1
0
Entering edit mode
Grace • 0
@609f1b8d
Last seen 20 months ago
United Kingdom

Hello, I know similar questions have been posted for the cpg.annotate() function in DMRcate() for DMR analysis with EPIC array data (no bisulphite sequencing), but I am really stuck and would massively appreciate any help!

Code should be placed in three backticks as shown below

 myannotation <- cpg.annotate("array", MSw, arraytype = "EPIC", analysis.type="differential", design=design, coef=2)

### returning error below

Error in if (nsig == 0) { : missing value where TRUE/FALSE needed
In addition: Warning messages:
1: In logit2(assay(object, "Beta")) : NaNs produced
2: In logit2(assay(object, "Beta")) : NaNs produced
3: Partial NA coefficients for 123812 probe(s) 

##the MSw object was produced with the following code and looks as such:
MSw <- getM(MsetSw, type = "beta", betaThreshold = 0.001)
![MSw table][1]
sessionInfo( )
R version 4.2.2 (2022-10-31 ucrt)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 19044)

Matrix products: default

locale:
[1] LC_COLLATE=English_United Kingdom.utf8 
[2] LC_CTYPE=English_United Kingdom.utf8   
[3] LC_MONETARY=English_United Kingdom.utf8
[4] LC_NUMERIC=C                           
[5] LC_TIME=English_United Kingdom.utf8    

attached base packages:
[1] parallel  stats4    stats     graphics  grDevices utils     datasets 
[8] methods   base     

other attached packages:
 [1] DMRcate_2.12.0                                     
 [2] circlize_0.4.15                                    
 [3] reshape2_1.4.4                                     
 [4] plyr_1.8.8                                         
 [5] corpcor_1.6.10                                     
 [6] CpGassoc_2.60                                      
 [7] data.table_1.14.8                                  
 [8] qqman_0.1.8                                        
 [9] tidyr_1.3.0                                        
[10] pvclust_2.2-0                                      
[11] sqldf_0.4-11                                       
[12] RSQLite_2.3.1                                      
[13] gsubfn_0.7                                         
[14] proto_1.0.0                                        
[15] pcaMethods_1.90.0                                  
[16] sva_3.46.0                                         
[17] BiocParallel_1.32.6                                
[18] genefilter_1.80.3                                  
[19] mgcv_1.8-42                                        
[20] nlme_3.1-162                                       
[21] dplyr_1.1.1                                        
[22] limma_3.54.2                                       
[23] WGCNA_1.72-1                                       
[24] fastcluster_1.2.3                                  
[25] dynamicTreeCut_1.63-1                              
[26] GO.db_3.16.0                                       
[27] AnnotationDbi_1.60.2                               
[28] missMethyl_1.32.1                                  
[29] IlluminaHumanMethylationEPICanno.ilm10b4.hg19_0.6.0
[30] MatrixEQTL_2.3                                     
[31] IlluminaHumanMethylation450kanno.ilmn12.hg19_0.6.1 
[32] IlluminaHumanMethylation450kmanifest_0.4.0         
[33] FlowSorted.Blood.EPIC_2.2.0                        
[34] ExperimentHub_2.6.0                                
[35] AnnotationHub_3.6.0                                
[36] BiocFileCache_2.6.1                                
[37] dbplyr_2.3.2                                       
[38] FlowSorted.Blood.450k_1.36.0                       
[39] IlluminaHumanMethylationEPICanno.ilm10b2.hg19_0.6.0
[40] IlluminaHumanMethylationEPICmanifest_0.3.0         
[41] minfi_1.44.0                                       
[42] bumphunter_1.40.0                                  
[43] locfit_1.5-9.7                                     
[44] iterators_1.0.14                                   
[45] foreach_1.5.2                                      
[46] Biostrings_2.66.0                                  
[47] XVector_0.38.0                                     
[48] SummarizedExperiment_1.28.0                        
[49] Biobase_2.58.0                                     
[50] MatrixGenerics_1.10.0                              
[51] matrixStats_0.63.0                                 
[52] GenomicRanges_1.50.2                               
[53] GenomeInfoDb_1.34.9                                
[54] IRanges_2.32.0                                     
[55] S4Vectors_0.36.2                                   
[56] BiocGenerics_0.44.0                                

loaded via a namespace (and not attached):
  [1] rappdirs_0.3.3                rtracklayer_1.58.0           
  [3] R.methodsS3_1.8.2             ggplot2_3.4.2                
  [5] bit64_4.0.5                   knitr_1.42                   
  [7] DelayedArray_0.23.2           R.utils_2.12.2               
  [9] rpart_4.1.19                  KEGGREST_1.38.0              
 [11] RCurl_1.98-1.12               GEOquery_2.66.0              
 [13] AnnotationFilter_1.22.0       doParallel_1.0.17            
 [15] generics_0.1.3                GenomicFeatures_1.50.4       
 [17] preprocessCore_1.60.2         chron_2.3-60                 
 [19] bit_4.0.5                     tzdb_0.3.0                   
 [21] xml2_1.3.3                    httpuv_1.6.9                 
 [23] xfun_0.38                     hms_1.1.3                    
 [25] evaluate_0.20                 promises_1.2.0.1             
 [27] fansi_1.0.4                   restfulr_0.0.15              
 [29] scrime_1.3.5                  progress_1.2.2               
 [31] DBI_1.1.3                     htmlwidgets_1.6.2            
 [33] reshape_0.8.9                 purrr_1.0.1                  
 [35] ellipsis_0.3.2                backports_1.4.1              
 [37] permute_0.9-7                 calibrate_1.7.7              
 [39] annotate_1.76.0               biomaRt_2.54.1               
 [41] deldir_1.0-6                  sparseMatrixStats_1.10.0     
 [43] vctrs_0.6.2                   ensembldb_2.22.0             
 [45] cachem_1.0.7                  Gviz_1.42.1                  
 [47] BSgenome_1.66.3               checkmate_2.1.0              
 [49] GenomicAlignments_1.34.1      prettyunits_1.1.1            
 [51] mclust_6.0.0                  cluster_2.1.4                
 [53] lazyeval_0.2.2                crayon_1.5.2                 
 [55] edgeR_3.40.2                  pkgconfig_2.0.3              
 [57] ProtGenerics_1.30.0           nnet_7.3-18                  
 [59] rlang_1.1.0                   lifecycle_1.0.3              
 [61] filelock_1.0.2                dichromat_2.0-0.1            
 [63] tcltk_4.2.2                   rngtools_1.5.2               
 [65] base64_2.0.1                  Matrix_1.5-4                 
 [67] Rhdf5lib_1.20.0               base64enc_0.1-3              
 [69] GlobalOptions_0.1.2           png_0.1-8                    
 [71] rjson_0.2.21                  bitops_1.0-7                 
 [73] R.oo_1.25.0                   rhdf5filters_1.10.1          
 [75] blob_1.2.4                    DelayedMatrixStats_1.20.0    
 [77] doRNG_1.8.6                   shape_1.4.6                  
 [79] stringr_1.5.0                 nor1mix_1.3-0                
 [81] readr_2.1.4                   jpeg_0.1-10                  
 [83] scales_1.2.1                  memoise_2.0.1                
 [85] magrittr_2.0.3                zlibbioc_1.44.0              
 [87] compiler_4.2.2                BiocIO_1.8.0                 
 [89] RColorBrewer_1.1-3            illuminaio_0.40.0            
 [91] DSS_2.46.0                    Rsamtools_2.14.0             
 [93] cli_3.6.1                     htmlTable_2.4.1              
 [95] Formula_1.2-5                 MASS_7.3-58.3                
 [97] tidyselect_1.2.0              stringi_1.7.12               
 [99] yaml_2.3.7                    askpass_1.1                  
[101] latticeExtra_0.6-30           grid_4.2.2                   
[103] VariantAnnotation_1.44.1      tools_4.2.2                  
[105] rstudioapi_0.14               foreign_0.8-84               
[107] bsseq_1.34.0                  gridExtra_2.3                
[109] digest_0.6.31                 BiocManager_1.30.20          
[111] shiny_1.7.4                   quadprog_1.5-8               
[113] Rcpp_1.0.10                   siggenes_1.72.0              
[115] BiocVersion_3.16.0            later_1.3.0                  
[117] org.Hs.eg.db_3.16.0           httr_1.4.5                   
[119] biovizBase_1.46.0             colorspace_2.1-0             
[121] XML_3.99-0.14                 splines_4.2.2                
[123] statmod_1.5.0                 multtest_2.54.0              
[125] xtable_1.8-4                  R6_2.5.1                     
[127] Hmisc_5.0-1                   pillar_1.9.0                 
[129] htmltools_0.5.5               mime_0.12                    
[131] glue_1.6.2                    fastmap_1.1.1                
[133] interactiveDisplayBase_1.36.0 beanplot_1.3.1               
[135] codetools_0.2-19              utf8_1.2.3                   
[137] lattice_0.21-8                tibble_3.2.1                 
[139] curl_5.0.0                    gtools_3.9.4                 
[141] openssl_2.0.6                 interp_1.1-4                 
[143] survival_3.5-5                rmarkdown_2.21               
[145] munsell_0.5.0                 rhdf5_2.42.1                 
[147] GenomeInfoDbData_1.2.9        HDF5Array_1.26.0             
[149] impute_1.72.3                 gtable_0.3.3                 
>
DNAMethylation methylationArrayAnalysis DMRcate MethylationArrayData MethylationArray • 1.5k views
ADD COMMENT
0
Entering edit mode

I also get the same error message if I specify what=c("Beta") as an argument :)

myannotation <- cpg.annotate("array", MSw, what=c("Beta"), arraytype = "EPIC", analysis.type="differential", design=design, coef=2)

Error in if (nsig == 0) { : missing value where TRUE/FALSE needed In addition: Warning messages: 1: In logit2(assay(object, "Beta")) : NaNs produced 2: In logit2(assay(object, "Beta")) : NaNs produced 3: Partial NA coefficients for 123812 probe(s)

ADD REPLY
0
Entering edit mode

enter image description here

I think it could be as the table above, View(MSw), shows that many of my beta values are greater than 1. I am unsure how to fix this.

ADD REPLY
1
Entering edit mode
Tim Peters ▴ 200
@tim-peters-7579
Last seen 4 weeks ago
Australia

Hi Grace,

Looks like these are M-values instead of beta values. Try:

myannotation <- cpg.annotate("array", MSw, what="M", arraytype = "EPIC", analysis.type="differential", design=design, coef=2)

Cheers, Tim

ADD COMMENT
0
Entering edit mode

Thanks Tim, I will try this now, I am very grateful.

Just to clarify though, if you look at my code for making the MSw, it specifies argument for 'type = beta'. I was wondering your opinion on why I have generated M-values then (attached below in the middle of the script on the right)

Many thanks, Grace

ADD REPLY
1
Entering edit mode

Hi Grace,

When the object you pass to cpg.annotate() is a matrix, you must specify if they are M values or beta values using the what argument. In your case, the appropriate argument is what="M". The function will then take care of the rest.

I understand that the argument description for object is potentially misleading; tbh it should read "M-values or beta values" instead of just "M-values" - thank you and I'll update this.

I don't understand why you passed type="beta" to getM() though, this is unnecessary.

Cheers, Tim

ADD REPLY
0
Entering edit mode

enter image description here

ADD REPLY

Login before adding your answer.

Traffic: 1035 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6