Are LFQ workflow arguments from DEP package all required or optional?
0
0
Entering edit mode
@14cf73dd
Last seen 18 months ago
Morocco

I'm trying to run the LFQ workflow from the DEP package in R using my protein dataset but some arguments don't apply to my case:

.#Run LFQ workflow of DEP package

 data_results <- LFQ(comparison_table, expdesign, type = "all", name = "description", alpha = 0.05, lfc = 1)

When running the code, I get errors like :

Error: 'Protein.IDs' is not a column in 'comparison_table'. 

Error: 'Gene.names' is not a column in 'comparison_table'.

These errors indicate that these arguments are required for the code to run properly. However, when I tried the code using the example dataset provided in the package documentation, it worked without using some of the arguments :

data_results <- LFQ(data, experimental_design, fun = "MinProb", type = "control", control = "Ctrl", alpha = 0.05, lfc = 1)

worked with no errors although they didn't use some arguments like ids.

Here's my dataset "comparison_table" :

'data.frame':   4251 obs. of  41 variables:
 $ description: chr  "1433B" "1433E" "1433F" "1433G" ...
 $ S2.50      : num  0.1241 0.1535 0.0477 0.0412 0.041 ...
 $ S3.50      : num  0.1649 0.2283 0.0681 0.0821 0.0925 ...
 $ S4.50      : num  0.14 0.1455 0.0323 0.0501 0.0285 ...
 $ S5.50      : num  0.1028 0.1735 0.044 0.0366 0.1784 ...
 $ S6.50      : num  0.106 0.1268 0.0424 0.038 0.0463 ...
 $ S7.50      : num  0.0578 0.0906 0 0.0503 0.043 ...
 $ S8.50      : num  0.1112 0.1262 0.0229 0.0456 0.0713 ...
 $ S9.30      : num  0.275 0.1972 0.0494 0.0632 0.1748 ...
 $ S10.50     : num  0.2444 0.1801 0.04 0.0531 0 ...
 $ S11.30     : num  0.0911 0.1381 0.0195 0.0324 0 ...
 $ S13.50     : num  0.0557 0.1223 0.0186 0.0339 0.0706 ...
 $ S16.50     : num  0.1488 0.2271 0.0692 0.1448 0.0275 ...
 $ S18.50     : num  0.133 0.1941 0.0357 0.0582 0.2929 ...
 $ S21.50     : num  0.0452 0.1454 0.0264 0.0263 0.1271 ...
 $ S22.50     : num  0.1013 0.1303 0.0439 0.0471 0.0603 ...
 $ S23.50     : num  0.1362 0.2774 0.0492 0.0716 0.0826 ...
 $ S24.30     : num  0.0806 0.105 0.0242 0.0602 0.172 ...
 $ S25.50     : num  0.2112 0.1573 0.0482 0.107 0.0221 ...
 $ S26.50     : num  0.0747 0.1473 0.026 0.0453 0.0999 ...
 $ S27.50     : num  0.1742 0.1427 0.0394 0.0982 0 ...
 $ S28.50     : num  0.1813 0.1007 0.0275 0.0493 0.0763 ...
 $ S29.50     : num  0.137 0.2102 0.0156 0.0403 0.0432 ...
 $ S31.50     : num  0.1186 0.1456 0.0539 0.1181 0.1497 ...
 $ S33.30     : num  0.1494 0.2145 0.0382 0.0588 0.1861 ...
 $ S34.50     : num  0.1192 0.1255 0.0145 0.0648 0.2043 ...
 $ S35.30     : num  0.3148 0.0675 0.1399 0.0871 0.1041 ...
 $ S36.50     : num  0.0631 0.0468 0.0097 0.0483 0.0337 ...
 $ S37.50     : num  0.1911 0.1843 0.0303 0.0876 0.0181 ...
 $ S38.30     : num  0.1872 0.1354 0.0351 0.0505 0.1045 ...
 $ S40.50     : num  0.18 0.2015 0.0771 0.0832 0.1211 ...
 $ S41.50     : num  0.1595 0.1871 0.0156 0.0717 0.0807 ...
 $ S42.30     : num  0.0743 0.1569 0.0418 0.0416 0.0323 ...
 $ S44.50     : num  0.0888 0.156 0.0571 0.0663 0 ...
 $ S45.50     : num  0.117 0.1437 0.0355 0.0283 0.0176 ...
 $ S46.50     : num  0.2356 0.1623 0.0294 0.0461 0 ...
 $ S48.50     : num  0.0876 0.1655 0.0245 0.0837 0 ...
 $ S49.50     : num  0.1308 0.1452 0.0425 0.0358 0 ...
 $ S50.50     : num  0.1036 0.1766 0.0449 0.0447 0.1131 ...
 $ S51.50     : num  0.2043 0.1906 0.0201 0.0767 0.0565 ...
 $ S52.50     : num  0.2043 0.1183 0 0.0661 0 ...

Here are the LFQ workflow arguments:

-proteins Data.frame, The data object.

-expdesign Data.frame, The experimental design object.

-fun "man", "bpca", "knn", "QRILC", "MLE", "MinDet", "MinProb", "min", "zero", "mixed" or "nbavg", Function used for data imputation based on manual_impute and impute.

-type 'all', 'control' or 'manual', The type of contrasts that will be generated.

-control Character(1), The sample name to which the contrasts are generated (the control sample would be most appropriate).

-test Character, The contrasts that will be tested if type = "manual". These should be formatted as "SampleA_vs_SampleB" or c("SampleA_vs_SampleC", "SampleB_vs_SampleC").

-filter Character, Name(s) of the column(s) to be filtered on.

-name Character(1), Name of the column representing gene names.

-ids 'Character(1), Name of the column representing protein IDs.

-alpha Numeric(1), sets the false discovery rate threshold.

-lfc Numeric(1), sets the log fold change threshold.

LFQ R DEP error • 669 views
ADD COMMENT

Login before adding your answer.

Traffic: 718 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6