Hi all,
I am working with RNA-seq data from mice cecum samples colonized with artificial community (but I am interested in only 1 species which has random abundance fluctuations). Not surprisingly, after Salmon I got very different pseudo-counts for different libraries. I want to perform DGE, but I am not sure if DESeq2 can manage to deal with such variations (I cannot check the intermediate results with boxplots or whatever, because it just uses the internal model on raw counts. Visualizations with VST look OK but don't answer my question).
I've read that DESeq internally accounts for library size. Is it enough in my case? Do I need to somehow additionally "normalize" my samples?
Thank you
df1 <- as.data.frame(txi$counts)
apply(df1,2,median)
lane1014MZI000248 lane107MZI000244 lane101MZI000243 lane108MZI000247 lane1013MZI000245 lane102MZI000246 lane106MZI000235
117 177 414 399 202 323 806
lane1010MZI000213 lane1011MZI000189 lane1019MZI000237 lane103MZI000204 lane1016MZI000211 lane104MZI000212 lane1012MZI000236
497 469 1075 161 205 376 1305
lane105MZI000188 lane1017MZI000214 lane1020MZI000238 lane1015MZI000210 lane109MZI000209 lane1018MZI000234
95 350 967 713 931 787
apply(df1,2,max)
lane1014MZI000248 lane107MZI000244 lane101MZI000243 lane108MZI000247 lane1013MZI000245 lane102MZI000246 lane106MZI000235
201168 565021 1195385 689544 432225 829544 1863546
lane1010MZI000213 lane1011MZI000189 lane1019MZI000237 lane103MZI000204 lane1016MZI000211 lane104MZI000212 lane1012MZI000236
2438458 1090979 1967173 1678215 805961 1302926 1875980
lane105MZI000188 lane1017MZI000214 lane1020MZI000238 lane1015MZI000210 lane109MZI000209 lane1018MZI000234
588991 2805928 2939780 2019798 2668822 3088835