RUVg for SNAP-ChIP ?
0
0
Entering edit mode
Bogdan ▴ 670
@bogdan-2367
Last seen 12 months ago
Palo Alto, CA, USA

I am wondering if there legit or if we can find a legit way to adapt RUVSeq -- RUVg approach to SNAP-ChIP assays.

As described on the page listed below, spike-ins (nucleosomes with a synthetic sequence) are typically added to the samples before immuno-precipitation step in such a way that global changes in the histone modifications can be captured by measuring the spike-in intensity.

In our case, we do use SNAP-ChIP spikes on 4 samples : 2 samples that are treated with DMSO, and 2 samples treated with ZT.

The R code that I am using is :

#################################################################################
#################################################################################

library("EDASeq")
library("RUVSeq")
library("RColorBrewer")

spikeins = data.frame(
DMSO_1 = 56955 ,
DMSO_7  = 56765 ,
ZT_2 = 24788 ,
ZT_8 = 47588 
)

rownames(spikeins) = "spikeins"


COUNTS = read.table("INPUT_FILE.txt", 
                         header=T, sep="\t", stringsAsFactors=F) 

COUNTS_dse = rbind(spikeins, COUNTS)

# after the filtering step that follows, and : we work with the data called "filtered"

group <- factor(c("DMSO", "DMSO", "ZT", "ZT"))
group <- relevel(group, ref="DMSO")

#################################################################################
#################################################################################

set <- newSeqExpressionSet(as.matrix(filtered),
                           phenoData = data.frame(group, row.names=colnames(filtered)))

phenoData(set)
featureData(set)

spikes <- rownames(filtered)[grep("^spike", rownames(filtered))]
spikes

loci <- rownames(filtered)[grep("-", rownames(filtered))]
loci

phenoData(set)
featureData(set)

# I understand that I should skip betweenLaneNormalization ()
# set <- betweenLaneNormalization(set, which="upper") 

#################################################################################
#################################################################################

set1 <- RUVg(set, spikes, k=1)
pData(set1)

              x        W_1
DMSO_1 DMSO -0.6887355
DMSO_7 DMSO -0.2536409
TAZ_2   ZT  0.3782554
TAZ_8   ZT  0.5641210

#################################################################################
#################################################################################
####### computing the differential expression using edgeR
# design <- model.matrix(~group + W_1, data=pData(set1))

design <- model.matrix((~0 + group + W_1), data=pData(set1))

contrast.matrix <- makeContrasts(ZT_DMSO=ZT-DMSO, levels=design)

y <- DGEList(counts=counts(set1))
y <- calcNormFactors(y, method="upperquartile").  #  shall we keep the computation of the normalization factors ?
y <- estimateGLMCommonDisp(y, design)
y <- estimateGLMTagwiseDisp(y, design)

fit <- glmFit(y, design)

lrt <- glmLRT(fit, contrast = contrast.matrix[,"ZT_DMSO"]) 

topTags(lrt)
dim(subset(as.data.frame(lrt), (logFC < -1) & (PValue < 0.01 )))[1]

However, the results that I am getting show the same number of up-reg or down-reg regions (approx 10 000 up, and approx 10 000 down), when I should have expected to see a global decrease in the amount of the histone mark (100 000 loci) (as confirmed by regular ChIP)

Thanks,

Bogdan

ps : the description of the spike-in protocol

https://www.thermofisher.com/us/en/home/references/newsletters-and-journals/bioprobes-journal-of-cell-biology-applications/bioprobes-79/snap-chip-histone-PTM-antibody-specificity.html

```

RUVSeq • 626 views
ADD COMMENT

Login before adding your answer.

Traffic: 973 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6