Entering edit mode
Hi,
I am running DE and FE analysis using edgeR for matched samples at two time points. The issue I have is interpreting the output from GO and KEGG analysis. For ex: a pathway from GO has a sig. P.Up value, while the same pathway in KEGG shows as sig. P.Down value:
Term Ont N Up Down **P.Up** P.Down
GO:0050853 B cell receptor signaling pathway BP 104 66 31 **1.73E-06** 0.988896595
Pathway N Up Down P.Up **P.Down**
path:hsa04662 B cell receptor signaling pathway 72 14 48 0.999960966 **4.49E-06**
Can you please let me know if I am missing something.
Please see the code below for your reference.
Time <- as.factor(Samples$group)
y <- DGEList(counts=Counts, group=Time,genes=as.data.frame(row.names(Counts)))
y$genes$entrezid <- mapIds(org.Hs.eg.db, y$genes$`row.names(Counts)`, keytype="SYMBOL", column="ENTREZID")
y$samples$Patient <- Samples$patient
# drop without gene symbols
y <- y[!is.na(y$genes$entrezid), ]
# design matrix
design <- model.matrix(~0+Patient+group, data=y$samples)
# filter out lowly expressed genes
keep <- filterByExpr(y,group=y$samples$group)
print(table(keep))
y <- y[keep,,keep.lib.sizes=FALSE]
# calculate normalized factors
y <- calcNormFactors(y)
# estimate dispersion
y <- estimateDisp(y,design, robust=TRUE)
#To perform quasi-likelihood F-tests:
fit <- glmQLFit(y,design,robust=TRUE)
ql <- glmQLFTest(fit)
# GO analysis
go <- goana(ql,geneid = "entrezid",species="Hs")
go_out <- topGO(go,n=Inf)
# KEGG analysis
keg <- kegga(ql,geneid = "entrezid",species="Hs")
kegg_out <- topKEGG(keg, n=Inf)
sessionInfo( )
R version 4.1.3 (2022-03-10)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Monterey 12.2
Matrix products: default
LAPACK: /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats4 stats graphics grDevices utils datasets methods base
other attached packages:
[1] matrixStats_0.62.0 umap_0.2.8.0 org.Hs.eg.db_3.14.0 AnnotationDbi_1.56.2 IRanges_2.28.0
[6] S4Vectors_0.32.4 Biobase_2.54.0 BiocGenerics_0.40.0 edgeR_3.36.0 limma_3.50.3
[11] stringi_1.7.6 data.table_1.14.2 forcats_0.5.1 stringr_1.4.0 dplyr_1.0.8
[16] purrr_0.3.4 readr_2.1.2 tidyr_1.2.0 tibble_3.1.6 ggplot2_3.3.5
[21] tidyverse_1.3.1 magick_2.7.3 tesseract_5.0.0
loaded via a namespace (and not attached):
[1] bitops_1.0-7 fs_1.5.2 lubridate_1.8.0 bit64_4.0.5
[5] httr_1.4.2 GenomeInfoDb_1.30.1 tools_4.1.3 backports_1.4.1
[9] utf8_1.2.2 R6_2.5.1 DBI_1.1.2 colorspace_2.0-3
[13] withr_2.5.0 tidyselect_1.1.2 bit_4.0.4 curl_4.3.2
[17] compiler_4.1.3 textshaping_0.3.6 cli_3.3.0 rvest_1.0.2
[21] xml2_1.3.3 labeling_0.4.2 scales_1.2.0 askpass_1.1
[25] rappdirs_0.3.3 systemfonts_1.0.4 digest_0.6.29 XVector_0.34.0
[29] pkgconfig_2.0.3 dbplyr_2.1.1 fastmap_1.1.0 rlang_1.0.2
[33] readxl_1.4.0 rstudioapi_0.13 RSQLite_2.2.12 farver_2.1.0
[37] generics_0.1.2 jsonlite_1.8.0 RCurl_1.98-1.6 magrittr_2.0.3
[41] GO.db_3.14.0 GenomeInfoDbData_1.2.7 Matrix_1.4-1 Rcpp_1.0.8.3
[45] munsell_0.5.0 fansi_1.0.3 reticulate_1.24 lifecycle_1.0.1
[49] zlibbioc_1.40.0 grid_4.1.3 blob_1.2.3 crayon_1.5.1
[53] lattice_0.20-45 Biostrings_2.62.0 haven_2.5.0 splines_4.1.3
[57] hms_1.1.1 KEGGREST_1.34.0 locfit_1.5-9.5 pillar_1.7.0
[61] reprex_2.0.1 glue_1.6.2 modelr_0.1.8 png_0.1-7
[65] vctrs_0.4.1 tzdb_0.3.0 cellranger_1.1.0 gtable_0.3.0
[69] openssl_2.0.0 assertthat_0.2.1 cachem_1.0.6 broom_0.8.0
[73] RSpectra_0.16-0 ragg_1.2.2 memoise_2.0.1 statmod_1.4.36
[77] ellipsis_0.3.2
Thanks Sharvari
Thank you so much!