scale of mu in assays(dds)
1
0
Entering edit mode
@4db1a7b6
Last seen 15 days ago
United States

Given the formula from the paper/vignette for mu, I was expecting mu to be on a log normalized scale:

The mean values μ_ij = s_j * q_ij

where log2(q_ij) = X_j * B_i

head(assays(dds)[["mu"]])

##                treated1     treated2     treated3  untreated1 untreated2
## FBgn0000008  154.396031   71.8609656   78.6055308  107.292909  169.04844
## FBgn0000014    1.501799    0.6989863    0.7645902    1.473255    2.32123

But, when I looked at this on my own data, I noticed that it is definitely not on a log scale, and has the highest correlation with un-normalized counts.

> assays(dds)$mu[1:3,1:3]
                   subject_12207_visit_1 subject_12207_visit_2 subject_12507_visit_1
ENSG00000000419.14             243.76985              218.3846             171.21118
ENSG00000000457.14             257.88875              239.1162             183.68763
ENSG00000000460.17              75.09165              100.5722              70.53956
> assays(normTransform(dds))[[1]][1:3,1:3]
                   subject_12207_visit_1 subject_12207_visit_2 subject_12507_visit_1
ENSG00000000419.14              7.559637              7.277101              7.514149
ENSG00000000457.14              7.594060              7.321629              8.115484
ENSG00000000460.17              6.895476              6.438979              5.774912
> counts(dds, normalized = TRUE)[1:3,1:3]
                   subject_12207_visit_1 subject_12207_visit_2 subject_12507_visit_1
ENSG00000000419.14              187.6589             154.10494             181.80345
ENSG00000000457.14              192.2146             158.96685             276.33463
ENSG00000000460.17              118.0543              85.76122              53.75474
> counts(dds)[1:3,1:3]
                   subject_12207_visit_1 subject_12207_visit_2 subject_12507_visit_1
ENSG00000000419.14                   260                   191                   175
ENSG00000000457.14                   253                   194                   259
ENSG00000000460.17                   112                   109                    48

What is the correct scale for mu?

> sessionInfo()
R version 4.1.2 (2021-11-01)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 20.04.4 LTS

Matrix products: default
BLAS:   /usr/lib/x86_64-linux-gnu/atlas/libblas.so.3.10.3
LAPACK: /usr/lib/x86_64-linux-gnu/atlas/liblapack.so.3.10.3

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C               LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8     LC_MONETARY=en_US.UTF-8   
 [6] LC_MESSAGES=en_US.UTF-8    LC_PAPER=en_US.UTF-8       LC_NAME=C                  LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] grid      stats4    stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] gridExtra_2.3               here_1.0.1                  foreach_1.5.2               forcats_0.5.1               stringr_1.4.0              
 [6] dplyr_1.0.8                 purrr_0.3.4                 readr_2.1.2                 tidyr_1.2.0                 tibble_3.1.6               
[11] ggplot2_3.3.5               tidyverse_1.3.1             DESeq2_1.34.0               SummarizedExperiment_1.24.0 Biobase_2.54.0             
[16] MatrixGenerics_1.6.0        matrixStats_0.61.0          GenomicRanges_1.46.1        GenomeInfoDb_1.30.1         IRanges_2.28.0             
[21] S4Vectors_0.32.3            BiocGenerics_0.40.0        

loaded via a namespace (and not attached):
 [1] bitops_1.0-7           fs_1.5.2               lubridate_1.8.0        bit64_4.0.5            RColorBrewer_1.1-2     httr_1.4.2            
 [7] rprojroot_2.0.2        tools_4.1.2            backports_1.4.1        utf8_1.2.2             R6_2.5.1               DBI_1.1.2             
[13] colorspace_2.0-3       withr_2.4.3            tidyselect_1.1.2       bit_4.0.4              compiler_4.1.2         cli_3.2.0             
[19] rvest_1.0.2            xml2_1.3.3             DelayedArray_0.20.0    scales_1.1.1           genefilter_1.76.0      XVector_0.34.0        
[25] pkgconfig_2.0.3        dbplyr_2.1.1           fastmap_1.1.0          limma_3.50.1           rlang_1.0.1            readxl_1.3.1          
[31] rstudioapi_0.13        RSQLite_2.2.10         generics_0.1.2         jsonlite_1.8.0         BiocParallel_1.28.3    RCurl_1.98-1.6        
[37] magrittr_2.0.2         GenomeInfoDbData_1.2.7 Matrix_1.4-0           Rcpp_1.0.8             munsell_0.5.0          fansi_1.0.2           
[43] lifecycle_1.0.1        stringi_1.7.6          edgeR_3.36.0           zlibbioc_1.40.0        blob_1.2.2             parallel_4.1.2        
[49] crayon_1.5.0           lattice_0.20-45        Biostrings_2.62.0      haven_2.4.3            splines_4.1.2          annotate_1.72.0       
[55] hms_1.1.1              KEGGREST_1.34.0        locfit_1.5-9.4         pillar_1.7.0           codetools_0.2-18       geneplotter_1.72.0    
[61] reprex_2.0.1           XML_3.99-0.9           glue_1.6.2             modelr_0.1.8           png_0.1-7              vctrs_0.3.8           
[67] tzdb_0.2.0             cellranger_1.1.0       gtable_0.3.0           assertthat_0.2.1       cachem_1.0.6           xtable_1.8-4          
[73] broom_0.7.12           survival_3.2-13        iterators_1.0.14       AnnotationDbi_1.56.2   memoise_2.0.1          ellipsis_0.3.2
DESeq2 • 1.1k views
ADD COMMENT
0
Entering edit mode

I do see this:

DESeq fitted values using coefficients vs mu

which implies that normalized, but not logged.

ADD REPLY
1
Entering edit mode
@mikelove
Last seen 14 hours ago
United States

See the equations above. q is inside the log(). So it is original scale.

ADD COMMENT
0
Entering edit mode

I see -- apologies. I read the equation incorrectly. Thank you, much appreciated.

ADD REPLY

Login before adding your answer.

Traffic: 596 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6