Over 800,000 probes failing to meet Detection P-value - minfi
1
0
Entering edit mode
Lilly • 0
@c9d4ee80
Last seen 2.8 years ago
Australia

Hi!

I am currently performing an EWAS on some DNA methylation data. I am using Ilumina EPIC 850k array and the mifi package. During QC, after removing samples that have a detection p-value >0.05, I have found over 800,000 probes are failing to reach the detection p-value of 0.01. This is happening on the whole dataset and also a subset of 7 samples. I am not sure where the issue is occurring. My colleagues have performed analysis with the same dataset and have only had around 20,000 probes fail to meet the threshold. I have checked that the idat files have loaded correctly and even re-uploaded the original data but it is still occurring. If anyone has any advice on how to problem solve this please let me know.

Regards, Lilly

detP <- detectionP(rgSet)
write.table(detP, file = "detP.csv", sep = ",", quote = FALSE)
head(detP)
keep2 <- colMeans(detP) <0.05
mSetSw2 <- mSetSw[,keep2]
keep <- rowSums(detP < 0.01) == ncol(rgSet)
> write.table(detP, file = "detP.csv", sep = ",", quote = FALSE)
> head(detP)
           203096660092_R08C01 203096660092_R07C01 203096660092_R04C01 203096660092_R03C01
cg18478105        0.000000e+00        0.000000e+00        0.000000e+00          0.0000e+00
cg09835024        0.000000e+00        0.000000e+00        0.000000e+00          0.0000e+00
cg14361672        0.000000e+00        0.000000e+00        0.000000e+00          0.0000e+00
cg01763666        0.000000e+00        0.000000e+00        0.000000e+00          0.0000e+00
cg12950382        1.326109e-53        1.018518e-27        3.993235e-68          1.4103e-54
cg02115394        0.000000e+00        0.000000e+00        0.000000e+00          0.0000e+00
           203096660092_R02C01 203096660092_R01C01 203084910103_R05C01
cg18478105        0.000000e+00        0.000000e+00         0.807084441
cg09835024        0.000000e+00        0.000000e+00         0.871220810
cg14361672        0.000000e+00        0.000000e+00         0.890377227
cg01763666        0.000000e+00       1.916556e-306         0.734445120
cg12950382        2.686714e-40        9.062771e-19         0.915134781
cg02115394        0.000000e+00        0.000000e+00         0.008544051
> summary(detP)
 203096660092_R08C01 203096660092_R07C01 203096660092_R04C01 203096660092_R03C01 203096660092_R02C01 203096660092_R01C01
 Min.   :0.0000000   Min.   :0.0000000   Min.   :0.0000000   Min.   :0.0000000   Min.   :0.0000000   Min.   :0.0000000  
 1st Qu.:0.0000000   1st Qu.:0.0000000   1st Qu.:0.0000000   1st Qu.:0.0000000   1st Qu.:0.0000000   1st Qu.:0.0000000  
 Median :0.0000000   Median :0.0000000   Median :0.0000000   Median :0.0000000   Median :0.0000000   Median :0.0000000  
 Mean   :0.0002629   Mean   :0.0001721   Mean   :0.0001611   Mean   :0.0001979   Mean   :0.0003552   Mean   :0.0004123  
 3rd Qu.:0.0000000   3rd Qu.:0.0000000   3rd Qu.:0.0000000   3rd Qu.:0.0000000   3rd Qu.:0.0000000   3rd Qu.:0.0000000  
 Max.   :0.9999935   Max.   :0.9999996   Max.   :1.0000000   Max.   :1.0000000   Max.   :1.0000000   Max.   :1.0000000  
 203084910103_R05C01
 Min.   :0.0000     
 1st Qu.:0.1758     
 Median :0.5000     
 Mean   :0.4830     
 3rd Qu.:0.7796     
 Max.   :1.0000     
> keep2 <- colMeans(detP) <0.05
> head(keep2)
203096660092_R08C01 203096660092_R07C01 203096660092_R04C01 203096660092_R03C01 203096660092_R02C01 203096660092_R01C01 
               TRUE                TRUE                TRUE                TRUE                TRUE                TRUE 
> str(keep2)
 Named logi [1:7] TRUE TRUE TRUE TRUE TRUE TRUE ...
 - attr(*, "names")= chr [1:7] "203096660092_R08C01" "203096660092_R07C01" "203096660092_R04C01" "203096660092_R03C01" ...
> sum(keep2)
[1] 6
> mSetSw2 <- mSetSw[,keep2]
> dim(mSetSw2)
[1] 866091      6
> keep <- rowSums(detP < 0.01) == ncol(rgSet)
> str(keep)
 Named logi [1:866091] FALSE FALSE FALSE FALSE FALSE TRUE ...
 - attr(*, "names")= chr [1:866091] "cg18478105" "cg09835024" "cg14361672" "cg01763666" ...
> table(keep)
keep
 FALSE   TRUE 
801563  64528
> sessionInfo()
R version 4.1.0 (2021-05-18)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: CentOS Linux 7 (Core)

Matrix products: default
BLAS/LAPACK: /usr/local/intel/2018u3/compilers_and_libraries_2018.3.222/linux/mkl/lib/intel64_lin/libmkl_gf_lp64.so

locale:
 [1] LC_CTYPE=en_AU.UTF-8       LC_NUMERIC=C               LC_TIME=en_AU.UTF-8        LC_COLLATE=en_AU.UTF-8    
 [5] LC_MONETARY=en_AU.UTF-8    LC_MESSAGES=en_AU.UTF-8    LC_PAPER=en_AU.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C             LC_MEASUREMENT=en_AU.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
 [1] grid      parallel  stats4    stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] stringr_1.4.0                                       Gviz_1.36.2                                        
 [3] minfiData_0.38.0                                    IlluminaHumanMethylation450kmanifest_0.4.0         
 [5] RColorBrewer_1.1-2                                  IlluminaHumanMethylationEPICmanifest_0.3.0         
 [7] IlluminaHumanMethylationEPICanno.ilm10b2.hg19_0.6.0 missMethyl_1.26.1                                  
 [9] IlluminaHumanMethylation450kanno.ilmn12.hg19_0.6.0  mitch_1.4.0                                        
[11] FlowSorted.Blood.EPIC_1.10.1                        ExperimentHub_2.0.0                                
[13] AnnotationHub_3.0.1                                 BiocFileCache_2.0.0                                
[15] dbplyr_2.1.1                                        IlluminaHumanMethylationEPICanno.ilm10b4.hg19_0.6.0
[17] nlme_3.1-152                                        quadprog_1.5-8                                     
[19] genefilter_1.74.0                                   topconfects_1.8.0                                  
[21] beeswarm_0.4.0                                      gplots_3.1.1                                       
[23] zoo_1.8-9                                           knitr_1.33                                         
[25] DMRcate_2.6.0                                       minfi_1.38.0                                       
[27] bumphunter_1.34.0                                   locfit_1.5-9.4                                     
[29] iterators_1.0.13                                    foreach_1.5.1                                      
[31] Biostrings_2.60.1                                   XVector_0.32.0                                     
[33] SummarizedExperiment_1.22.0                         Biobase_2.52.0                                     
[35] MatrixGenerics_1.4.2                                matrixStats_0.60.0                                 
[37] GenomicRanges_1.44.0                                GenomeInfoDb_1.28.0                                
[39] IRanges_2.26.0                                      limma_3.48.0                                       
[41] S4Vectors_0.30.0                                    BiocGenerics_0.38.0                                

loaded via a namespace (and not attached):
  [1] utf8_1.2.1                    R.utils_2.10.1                tidyselect_1.1.1              RSQLite_2.2.7                
  [5] AnnotationDbi_1.54.1          htmlwidgets_1.5.3             BiocParallel_1.26.0           munsell_0.5.0                
  [9] codetools_0.2-18              preprocessCore_1.54.0         statmod_1.4.36                colorspace_2.0-1             
 [13] filelock_1.0.2                rstudioapi_0.13               GenomeInfoDbData_1.2.6        bit64_4.0.5                  
 [17] rhdf5_2.36.0                  vctrs_0.3.8                   generics_0.1.0                xfun_0.24                    
 [21] biovizBase_1.40.0             R6_2.5.0                      illuminaio_0.34.0             AnnotationFilter_1.16.0      
 [25] bitops_1.0-7                  rhdf5filters_1.4.0            cachem_1.0.5                  reshape_0.8.8                
 [29] DelayedArray_0.18.0           assertthat_0.2.1              promises_1.2.0.1              BiocIO_1.2.0                 
 [33] scales_1.1.1                  bsseq_1.28.0                  nnet_7.3-16                   gtable_0.3.0                 
 [37] ensembldb_2.16.4              rlang_0.4.11                  splines_4.1.0                 rtracklayer_1.52.0           
 [41] lazyeval_0.2.2                DSS_2.40.0                    GEOquery_2.60.0               dichromat_2.0-1              
 [45] checkmate_2.0.0               reshape2_1.4.4                BiocManager_1.30.16           yaml_2.2.1                   
 [49] GenomicFeatures_1.44.0        backports_1.2.1               httpuv_1.6.1                  Hmisc_4.5-0                  
 [53] tools_4.1.0                   nor1mix_1.3-0                 ggplot2_3.3.4                 ellipsis_0.3.2               
 [57] siggenes_1.66.0               Rcpp_1.0.6                    plyr_1.8.6                    base64enc_0.1-3              
 [61] sparseMatrixStats_1.4.2       progress_1.2.2                zlibbioc_1.38.0               purrr_0.3.4                  
 [65] RCurl_1.98-1.3                prettyunits_1.1.1             rpart_4.1-15                  openssl_1.4.4                
 [69] cluster_2.1.2                 magrittr_2.0.1                data.table_1.14.0             ProtGenerics_1.24.0          
 [73] evaluate_0.14                 mime_0.11                     hms_1.1.0                     xtable_1.8-6                 
 [77] XML_3.99-0.6                  jpeg_0.1-8.1                  mclust_5.4.7                  gridExtra_2.3                
 [81] compiler_4.1.0                biomaRt_2.48.1                tibble_3.1.2                  KernSmooth_2.23-20           
 [85] crayon_1.4.1                  R.oo_1.24.0                   htmltools_0.5.1.1             later_1.2.0                  
 [89] Formula_1.2-4                 tidyr_1.1.3                   DBI_1.1.1                     MASS_7.3-54                  
 [93] rappdirs_0.3.3                Matrix_1.4-0                  readr_1.4.0                   cli_2.5.0                    
 [97] permute_0.9-5                 R.methodsS3_1.8.1             pkgconfig_2.0.3               GenomicAlignments_1.28.0     
[101] foreign_0.8-81                xml2_1.3.2                    annotate_1.70.0               rngtools_1.5                 
[105] multtest_2.48.0               beanplot_1.2                  doRNG_1.8.2                   scrime_1.3.5                 
[109] VariantAnnotation_1.38.0      digest_0.6.27                 rmarkdown_2.9                 base64_2.0                   
[113] htmlTable_2.2.1               edgeR_3.34.0                  DelayedMatrixStats_1.14.2     restfulr_0.0.13              
[117] curl_4.3.2                    shiny_1.6.0                   Rsamtools_2.8.0               gtools_3.9.2                 
[121] rjson_0.2.20                  lifecycle_1.0.0               echarts4r_0.4.1               Rhdf5lib_1.14.2              
[125] askpass_1.1                   BSgenome_1.60.0               fansi_0.5.0                   pillar_1.6.1                 
[129] GGally_2.1.2                  lattice_0.20-44               KEGGREST_1.32.0               fastmap_1.1.0                
[133] httr_1.4.2                    survival_3.2-11               interactiveDisplayBase_1.30.0 glue_1.4.2                   
[137] png_0.1-7                     BiocVersion_3.13.1            bit_4.0.4                     stringi_1.6.2                
[141] HDF5Array_1.20.0              blob_1.2.1                    org.Hs.eg.db_3.13.0           caTools_1.18.2               
[145] latticeExtra_0.6-30           memoise_2.0.0                 dplyr_1.0.7
IlluminaHumanMethylationEPICanno.ilm10b3.hg19 failingprobes detectionP minfi • 1.1k views
ADD COMMENT
0
Entering edit mode
@james-w-macdonald-5106
Last seen 24 minutes ago
United States

You are requiring that ALL of the probes have a detection p-value < 0.01 for each CpG. That's a little extreme. You might consider checking for problematic samples

colSums(detP > 0.01)/nrow(detP) * 100

And if you have a sample with a high proportion of failed probes maybe exclude it. Or maybe accept it but allow for it when filtering. Something like

keep <- rowSums(detP < 0.01) >= 6L

Then you could presumably use sample weights when fitting your by-CpG models to down-weight that sample.

ADD COMMENT

Login before adding your answer.

Traffic: 983 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6