Hello,
In addition to the Deseq2 manual, these are the posts that I read before coming up with the code.
I have converted my data into a group and I have time-series data as follows.
# Reprex for the phenotype data
colData <- data.frame(
row.names = c("DY32156","JZ72116","ZX19451",
"GC93380","ZC5448","YW112","MU27846","MP37616","LN23812",
"BJ30461","RR66788","AX70386"),
patient_id = as.factor(c("patient_10",
"patient_10","patient_10","patient_11",
"patient_11","patient_11","patient_12","patient_12",
"patient_12","patient_14","patient_14","patient_14")),
group = as.factor(c("test_TP1",
"test_TP2","control_TP0","test_TP1","test_TP2",
"control_TP0","control_act_TP1","control_act_TP2",
"control_TP0","control_act_TP1","control_act_TP2",
"control_TP0")))
patient_id group
DY32156 patient_10 test_TP1
JZ72116 patient_10 test_TP2
ZX19451 patient_10 control_TP0
GC93380 patient_11 test_TP1
ZC5448 patient_11 test_TP2
YW112 patient_11 control_TP0
MU27846 patient_12 control_act_TP1
MP37616 patient_12 control_act_TP2
LN23812 patient_12 control_TP0
BJ30461 patient_14 control_act_TP1
RR66788 patient_14 control_act_TP2
AX70386 patient_14 control_TP0
I used the following design for a paired analysis
# Deseq2 design
ddsMat <- DESeqDataSetFromMatrix(countData = countData,
colData = colData,
design = ~ patient_id + group)
# Set the reference
ddsMat$group <- relevel(ddsMat$group, ref = "control_TP0")
# Perfrom deseq2
deseq_res <- DESeq(ddsMat, parallel = T)
# Check the
resultsNames(deseq_res)
1 "Intercept"
2 "patient_id_patient_11_vs_patient_10"
[3] "patient_id_patient_12_vs_patient_10"
[4] "patient_id_patient_13_vs_patient_10"
[5] "patient_id_patient_14_vs_patient_10"
[6] "patient_id_patient_15_vs_patient_10"
[7] "patient_id_patient_16_vs_patient_10"
[8] "patient_id_patient_18_vs_patient_10"
[9] "patient_id_patient_20_vs_patient_10"
[10] "patient_id_patient_3_vs_patient_10"
[11] "patient_id_patient_4_vs_patient_10"
[12] "patient_id_patient_6_vs_patient_10"
[13] "patient_id_patient_8_vs_patient_10"
[14] "group_control_act_TP1_vs_control_TP0"
[15] "group_control_act_TP2_vs_control_TP0"
[16] "group_test_TP1_vs_control_TP0"
[17] "group_test_TP2_vs_control_TP0"
# Genes that have changed over time in the test group in reference to active control group
test_vs_act_control_all_tp <-
results(deseq_res,
contrast=list(
c("group_test_TP2_vs_control_TP0", "group_test_TP1_vs_control_TP0" ),
c("group_control_act_TP2_vs_control_TP0", "group_control_act_TP1_vs_control_TP0")), test="Wald")
Please let me know if I am using the design and contrasts correctly to perform a paired analysis and to see genes that have shown a difference in the test group when compared to the active control over time.
Thank you very much for your time on this query.