DESeq2 rows did not converge in beta, how to solve
1
0
Entering edit mode
n.vandis • 0
@8baf45b1
Last seen 3.1 years ago
Netherlands

Hello!

We are using DESeq2 to analyse RNAseq data from an experiment and are running into convergence errors that we are unable to solve.

We are not sure what is causing these errors; and would preferably solve them rather than dropping the genes with the error from the results.

We already tried the advice given here: DESeq2 Error: rows did not converge in beta, labelled in mcols(object)$betaConv. Use larger maxit argument with nbinomWaldTest

We prefilter for genes expressed with count>10 in 2 of the 3 replicates at least on one occassion (timepoint/treatment combination); which is about as strict as we want to go. And we increased the maximum iterations to maxit=10,000

Leaving us still with "261 rows did not converge in beta" out of 25 480 genes in total.

Looking at the expression patterns of the genes that don't converge, many seem to be presence/absence genes: we observe many zero counts, and for the samples where these genes are expressed, the expression range is similar (see figures included below).

Anyone have an idea how to deal with these genes?

Thanks! Natalie

Heat map z-scores of raw counts for 261 genes with convergence errors, all 48 samples shown Heat map z-scores of raw counts for 261 genes with convergence errors, all 48 samples shown

Histogram for example gene with convergence error, raw counts per sample

Histogram for example gene with convergence error, z-scores of raw counts per sample

Code for construction and running DESeq2:


> # Design for Treatment effects within and between weeks, all weeks together
> # Correct for individual effects nested in group with Tube.n
> design <- ~ -1 + Treat_week + Treat_week:Tube.n + Treatment + Treatment:Treat_week

> dds <- DESeqDataSetFromMatrix(countData = counts,
                                   colData= sampleinfo,
                                   design = design)

> dds@colData
DataFrame with 48 rows and 6 columns
        Sample  Treat_week   Tube   Tube.n Treatment sizeFactor
     <character>  <factor> <factor> <factor> <factor> <numeric>
        BEF_136         w2   136      1        BEF   0.9003222
        N_3_136         w2   136      1          N   1.0020815
        C_3_136         w2   136      1          C   0.9995351
        W_3_136         w2   136      1          W   1.0937525
        BEF_326         w2   326      2        BEF   0.7327493
        N_3_326         w2   326      2          N   1.0197463
        C_3_326         w2   326      2          C   1.0153445
        W_3_326         w2   326      2          W   1.1075391
        BEF_473         w2   473      3        BEF   0.9488591
        N_3_473         w2   473      3          N   0.6653621
        C_3_473         w2   473      3          C   0.8698424
        W_3_473         w2   473      3          W   0.9524100
        BEF_102         w4   102      1        BEF   1.0311267
        N_3_102         w4   102      1          N   1.0104705
        C_3_102         w4   102      1          C   1.0675697
        W_3_102         w4   102      1          W   1.0146415
        BEF_219         w4   219      2        BEF   0.9445711
        N_3_219         w4   219      2          N   1.1474465
        C_3_219         w4   219      2          C   0.9889870
        W_3_219         w4   219      2          W   1.1061815
        BEF_367         w4   367      3        BEF   0.9656871
        N_3_367         w4   367      3          N   0.8936870
        C_3_367         w4   367      3          C   0.9712031
        W_3_367         w4   367      3          W   0.9428335
        BEF_128         w6   128      1        BEF   0.9951708
        N_3_128         w6   128      1          N   1.0238084
        C_3_128         w6   128      1          C   1.0812198
        W_3_128         w6   128      1          W   1.0628506
        BEF_390         w6   390      2        BEF   0.9483895
        N_3_390         w6   390      2          N   1.0471350
        C_3_390         w6   390      2          C   1.0149936
        W_3_390         w6   390      2          W   0.9980588
        BEF_471         w6   471      3        BEF   0.9381325
        N_3_471         w6   471      3          N   1.0343588
        C_3_471         w6   471      3          C   0.9019616
        W_3_471         w6   471      3          W   1.1463979
        BEF_407         w8   407      1        BEF   1.0869852
        N_3_407         w8   407      1          N   1.1773927
        C_3_407         w8   407      1          C   1.0102222
        W_3_407         w8   407      1          W   1.1481354
        BEF_411         w8   411      2        BEF   0.9814388
        N_3_411         w8   411      2          N   1.1090623
        C_3_411         w8   411      2          C   1.0564870
        W_3_411         w8   411      2          W   1.0433508
        BEF_94          w8    94      3        BEF   1.0275384
        N_3_94          w8    94      3          N   1.3217692
        C_3_94          w8    94      3          C   1.2059190
        W_3_94          w8    94      3          W   1.2727506


> # Prefilter gene set
> dds.filt <- dds[rownames(dds) %in% filtwhich.n2,] # only keep genes expressed with count>10 in >=2 replicates at least in one timepoint/treatment combi
> dim(dds)
[1] 29113    48
> dim(dds.filt)
[1] 25480    48


> # Run model
> dds.3h <- estimateSizeFactors(dds.filt)
> dds.3h <- estimateDispersions(dds.3h)
> dds.3h <- nbinomWaldTest(dds.3h, maxit=10000) #default maxit=100

> table(mcols(dds.3h)$betaConv, useNA="always")
FALSE  TRUE  <NA> 
  261 25217     2


> sessionInfo()
R version 4.1.0 (2021-05-18)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 17763)

Matrix products: default

locale:
[1] LC_COLLATE=Dutch_Netherlands.1252  LC_CTYPE=Dutch_Netherlands.1252    LC_MONETARY=Dutch_Netherlands.1252 LC_NUMERIC=C                      
[5] LC_TIME=Dutch_Netherlands.1252    

attached base packages:
[1] parallel  stats4    stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] pheatmap_1.0.12             DESeq2_1.32.0               SummarizedExperiment_1.22.0 Biobase_2.52.0              MatrixGenerics_1.4.2       
 [6] matrixStats_0.60.0          GenomicRanges_1.44.0        GenomeInfoDb_1.28.1         IRanges_2.26.0              S4Vectors_0.30.0           
[11] BiocGenerics_0.38.0         PCAtools_2.4.0              ggrepel_0.9.1               forcats_0.5.1               stringr_1.4.0              
[16] dplyr_1.0.7                 purrr_0.3.4                 readr_2.0.1                 tidyr_1.1.3                 tibble_3.1.2               
[21] ggplot2_3.3.5               tidyverse_1.3.1            

loaded via a namespace (and not attached):
 [1] bitops_1.0-7              fs_1.5.0                  lubridate_1.7.10          bit64_4.0.5               RColorBrewer_1.1-2        httr_1.4.2               
 [7] tools_4.1.0               backports_1.2.1           irlba_2.3.3               utf8_1.2.1                R6_2.5.1                  DBI_1.1.1                
[13] colorspace_2.0-2          withr_2.4.2               tidyselect_1.1.1          bit_4.0.4                 compiler_4.1.0            fdrtool_1.2.16           
[19] cli_3.0.1                 rvest_1.0.1               xml2_1.3.2                DelayedArray_0.18.0       scales_1.1.1              genefilter_1.74.0        
[25] XVector_0.32.0            pkgconfig_2.0.3           sparseMatrixStats_1.4.2   dbplyr_2.1.1              fastmap_1.1.0             rlang_0.4.11             
[31] GlobalOptions_0.1.2       readxl_1.3.1              rstudioapi_0.13           RSQLite_2.2.7             DelayedMatrixStats_1.14.2 shape_1.4.6              
[37] ggVennDiagram_1.1.4       generics_0.1.0            jsonlite_1.7.2            BiocParallel_1.26.1       BiocSingular_1.8.1        RCurl_1.98-1.3           
[43] magrittr_2.0.1            GenomeInfoDbData_1.2.6    Matrix_1.3-3              Rcpp_1.0.7                munsell_0.5.0             fansi_0.5.0              
[49] lifecycle_1.0.0           stringi_1.6.2             zlibbioc_1.38.0           plyr_1.8.6                grid_4.1.0                blob_1.2.2               
[55] dqrng_0.3.0               crayon_1.4.1              lattice_0.20-44           beachmat_2.8.1            cowplot_1.1.1             Biostrings_2.60.1        
[61] haven_2.4.3               splines_4.1.0             annotate_1.70.0           circlize_0.4.13           hms_1.1.0                 KEGGREST_1.32.0          
[67] locfit_1.5-9.4            pillar_1.6.2              reshape2_1.4.4            ScaledMatrix_1.0.0        geneplotter_1.70.0        reprex_2.0.1             
[73] XML_3.99-0.6              glue_1.4.2                data.table_1.14.0         modelr_0.1.8              png_0.1-7                 vctrs_0.3.8              
[79] tzdb_0.1.2                cellranger_1.1.0          gtable_0.3.0              assertthat_0.2.1          cachem_1.0.5              rsvd_1.0.5               
[85] xtable_1.8-4              broom_0.7.9               survival_3.2-11           RVenn_1.1.0               AnnotationDbi_1.54.1      memoise_2.0.0            
[91] ellipsis_0.3.2
DESeq DESeq2 • 1.9k views
ADD COMMENT
1
Entering edit mode
@mikelove
Last seen 1 day ago
United States

hi Natalie,

The above plots are great, and they illustrate why DESeq2 is having issues. The counts are bimodal within the groups, which makes it difficult to fit to a NB model. Rather than force the NB model on data which is bimodal, you could consider to use a ZINB approach to separate the two outcomes: the amount of zeros per group and the count of the positive part of the distribution per group. zinbwave provides an extension for DESeq2:

https://bioconductor.org/packages/release/bioc/html/zinbwave.html

https://github.com/mikelove/zinbwave-deseq2

Alternatively, you could you a log transformation and linear model as in limma-voom. The linear model is less thrown off by the within-group bimodal distribution.

ADD COMMENT

Login before adding your answer.

Traffic: 699 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6