Hello,
I'm hoping to receive some guidance regarding an RNA-sequencing project I'm conducing right now. For this project, I have 9 time points, 3 biological replicates per time point, and 2 genotypes: wildtype vs mutant. I am using a likelihood ratio test in DESeq2 using the following code.
From a DESeq2 training page, the log2 fold change is printed in the results table for consistency with other results table outputs, but is not associated with the actual test. However, I am interested in detecting upregulated and downregulated genes. Seeing as I cannot use the log2 fold change from the DESeq results to measure effect size, is there any other tool I can use in DESeq2 to quantify effect size of these differentially expressed genes?
EDIT: to clarify, I want to find the genes that are consistently upregulated/downregulated across all 9 time points.
dds <- DESeqDataSetFromMatrix(ctdata, coldata, design = ~ genotype + age
dds <- DESeq(dds, test = 'LRT', reduced = ~ age)
sessionInfo( )
R version 4.1.0 (2021-05-18)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Big Sur 11.4
Matrix products: default
LAPACK: /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] grid splines parallel stats4 stats graphics grDevices utils datasets methods base
other attached packages:
[1] gprofiler2_0.2.1 ggformula_0.10.1 ggridges_0.5.3 scales_1.1.1
[5] ggstance_0.3.5 ggbeeswarm_0.6.0 org.Hs.eg.db_3.13.0 AnnotationDbi_1.54.1
[9] biomaRt_2.48.3 EnhancedVolcano_1.10.0 DEGreport_1.28.0 gplots_3.1.1
[13] VennDiagram_1.6.20 futile.logger_1.4.3 WGCNA_1.70-3 fastcluster_1.2.3
[17] dynamicTreeCut_1.63-1 WebGestaltR_0.4.4 pheatmap_1.0.12 ggpubr_0.4.0
[21] openxlsx_4.2.4 BiocParallel_1.26.2 ggrepel_0.9.1 forcats_0.5.1
[25] stringr_1.4.0 dplyr_1.0.7 purrr_0.3.4 readr_2.0.1
[29] tidyr_1.1.3 tibble_3.1.4 ggplot2_3.3.5 tidyverse_1.3.1
[33] DESeq2_1.32.0 SummarizedExperiment_1.22.0 Biobase_2.52.0 MatrixGenerics_1.4.3
[37] matrixStats_0.60.1 GenomicRanges_1.44.0 GenomeInfoDb_1.28.4 IRanges_2.26.0
[41] S4Vectors_0.30.0 BiocGenerics_0.38.0
loaded via a namespace (and not attached):
[1] rappdirs_0.3.3 bit64_4.0.5 knitr_1.34 DelayedArray_0.18.0
[5] data.table_1.14.0 rpart_4.1-15 KEGGREST_1.32.0 RCurl_1.98-1.4
[9] doParallel_1.0.16 generics_0.1.0 preprocessCore_1.54.0 cowplot_1.1.1
[13] lambda.r_1.2.4 RSQLite_2.2.8 bit_4.0.4 tzdb_0.1.2
[17] xml2_1.3.2 lubridate_1.7.10 assertthat_0.2.1 xfun_0.26
[21] hms_1.1.0 fansi_0.5.0 progress_1.2.2 caTools_1.18.2
[25] dbplyr_2.1.1 readxl_1.3.1 igraph_1.2.6 DBI_1.1.1
[29] geneplotter_1.70.0 tmvnsim_1.0-2 htmlwidgets_1.5.4 reshape_0.8.8
[33] apcluster_1.4.8 ellipsis_0.3.2 backports_1.2.1 annotate_1.70.0
[37] vctrs_0.3.8 Cairo_1.5-12.2 abind_1.4-5 cachem_1.0.6
[41] withr_2.4.2 ggforce_0.3.3 lasso2_1.2-21.1 checkmate_2.0.0
[45] prettyunits_1.1.1 mnormt_2.0.2 svglite_2.0.0 cluster_2.1.2
[49] lazyeval_0.2.2 crayon_1.4.1 genefilter_1.74.0 edgeR_3.34.1
[53] pkgconfig_2.0.3 tweenr_1.0.2 nlme_3.1-153 vipor_0.4.5
[57] nnet_7.3-16 rlang_0.4.11 lifecycle_1.0.0 filelock_1.0.2
[61] extrafontdb_1.0 BiocFileCache_2.0.0 modelr_0.1.8 polyclip_1.10-0
[65] ggrastr_0.2.3 cellranger_1.1.0 rngtools_1.5 Matrix_1.3-4
[69] carData_3.0-4 reprex_2.0.1 base64enc_0.1-3 beeswarm_0.4.0
[73] whisker_0.4 GlobalOptions_0.1.2 viridisLite_0.4.0 png_0.1-7
[77] rjson_0.2.20 bitops_1.0-7 ConsensusClusterPlus_1.56.0 KernSmooth_2.23-20
[81] Biostrings_2.60.2 blob_1.2.2 doRNG_1.8.2 shape_1.4.6
[85] jpeg_0.1-9 rstatix_0.7.0 ggsignif_0.6.3 memoise_2.0.0
[89] magrittr_2.0.1 plyr_1.8.6 zlibbioc_1.38.0 compiler_4.1.0
[93] RColorBrewer_1.1-2 ash_1.0-15 clue_0.3-59 cli_3.0.1
[97] XVector_0.32.0 htmlTable_2.2.1 formatR_1.11 Formula_1.2-4
[101] MASS_7.3-54 tidyselect_1.1.1 stringi_1.7.4 proj4_1.0-10.1
[105] locfit_1.5-9.4 latticeExtra_0.6-29 tools_4.1.0 rio_0.5.27
[109] circlize_0.4.13 rstudioapi_0.13 foreach_1.5.1 foreign_0.8-81
[113] logging_0.10-108 gridExtra_2.3 farver_2.1.0 digest_0.6.27
[117] Rcpp_1.0.7 car_3.0-11 broom_0.7.9 ggalt_0.4.0
[121] httr_1.4.2 Nozzle.R1_1.1-1 ggdendro_0.1.22 ComplexHeatmap_2.8.0
[125] psych_2.1.6 colorspace_2.0-2 rvest_1.0.1 XML_3.99-0.7
[129] fs_1.5.0 plotly_4.9.4.1 systemfonts_1.0.2 xtable_1.8-4
[133] jsonlite_1.7.2 futile.options_1.0.1 R6_2.5.1 Hmisc_4.5-0
[137] pillar_1.6.2 htmltools_0.5.2 glue_1.4.2 fastmap_1.1.0
[141] codetools_0.2-18 maps_3.3.0 utf8_1.2.2 lattice_0.20-44
[145] curl_4.3.2 gtools_3.9.2 zip_2.2.0 GO.db_3.13.0
[149] Rttf2pt1_1.3.9 survival_3.2-13 limma_3.48.3 munsell_0.5.0
[153] GetoptLong_1.0.5 GenomeInfoDbData_1.2.6 iterators_1.0.13 labelled_2.8.0
[157] impute_1.66.0 mosaicCore_0.9.0 haven_2.4.3 gtable_0.3.0
[161] extrafont_0.17