Hello,
I have a question regarding the results output of the Wald test I'm running in DESeq2. I have time-series data with samples collected at 5 time points b/w 2 genotypes: 0hr, 2hr, 6hr, 12hr, 24hr and mutant vs. control. My question is this: using the design in my code below, how is the Log2FoldChange calculated in the results table, considering that there are multiple time points with every gene? Is it the average log2 fold change across all time points per gene?
dds <- DESeqDataSetFromMatrix(countData = ctdata, colData = cldata, design = ~ genotype + time)
dds <- dds[rowSums(counts(dds) > 10,]
dds_res <- results(dds)
sessionInfo( )
R version 4.1.0 (2021-05-18)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Big Sur 11.4
Matrix products: default
LAPACK: /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] grid splines parallel stats4 stats graphics grDevices utils datasets methods base
other attached packages:
[1] DEGreport_1.28.0 gplots_3.1.1 VennDiagram_1.6.20 futile.logger_1.4.3 WGCNA_1.70-3
[6] fastcluster_1.2.3 dynamicTreeCut_1.63-1 WebGestaltR_0.4.4 pheatmap_1.0.12 ggpubr_0.4.0
[11] openxlsx_4.2.4 BiocParallel_1.26.2 ggrepel_0.9.1 forcats_0.5.1 stringr_1.4.0
[16] dplyr_1.0.7 purrr_0.3.4 readr_2.0.1 tidyr_1.1.3 tibble_3.1.4
[21] ggplot2_3.3.5 tidyverse_1.3.1 DESeq2_1.32.0 SummarizedExperiment_1.22.0 Biobase_2.52.0
[26] MatrixGenerics_1.4.3 matrixStats_0.60.1 GenomicRanges_1.44.0 GenomeInfoDb_1.28.2 IRanges_2.26.0
[31] S4Vectors_0.30.0 BiocGenerics_0.38.0
loaded via a namespace (and not attached):
[1] utf8_1.2.2 tidyselect_1.1.1 RSQLite_2.2.8 AnnotationDbi_1.54.1 htmlwidgets_1.5.3
[6] munsell_0.5.0 codetools_0.2-18 preprocessCore_1.54.0 withr_2.4.2 colorspace_2.0-2
[11] knitr_1.33 rstudioapi_0.13 ggsignif_0.6.2 labeling_0.4.2 lasso2_1.2-21.1
[16] GenomeInfoDbData_1.2.6 mnormt_2.0.2 farver_2.1.0 bit64_4.0.5 vctrs_0.3.8
[21] generics_0.1.0 lambda.r_1.2.4 xfun_0.25 R6_2.5.1 doParallel_1.0.16
[26] clue_0.3-59 locfit_1.5-9.4 reshape_0.8.8 bitops_1.0-7 cachem_1.0.6
[31] DelayedArray_0.18.0 assertthat_0.2.1 vroom_1.5.4 scales_1.1.1 nnet_7.3-16
[36] gtable_0.3.0 Cairo_1.5-12.2 rlang_0.4.11 genefilter_1.74.0 systemfonts_1.0.2
[41] GlobalOptions_0.1.2 rstatix_0.7.0 impute_1.66.0 broom_0.7.9 checkmate_2.0.0
[46] abind_1.4-5 modelr_0.1.8 backports_1.2.1 Hmisc_4.5-0 tools_4.1.0
[51] psych_2.1.6 logging_0.10-108 ellipsis_0.3.2 RColorBrewer_1.1-2 ggdendro_0.1.22
[56] plyr_1.8.6 Rcpp_1.0.7 base64enc_0.1-3 zlibbioc_1.38.0 RCurl_1.98-1.4
[61] rpart_4.1-15 GetoptLong_1.0.5 cowplot_1.1.1 haven_2.4.3 cluster_2.1.2
[66] fs_1.5.0 apcluster_1.4.8 magrittr_2.0.1 data.table_1.14.0 futile.options_1.0.1
[71] circlize_0.4.13 reprex_2.0.1 tmvnsim_1.0-2 whisker_0.4 hms_1.1.0
[76] xtable_1.8-4 XML_3.99-0.7 rio_0.5.27 jpeg_0.1-9 readxl_1.3.1
[81] gridExtra_2.3 shape_1.4.6 compiler_4.1.0 KernSmooth_2.23-20 crayon_1.4.1
[86] htmltools_0.5.2 mgcv_1.8-36 tzdb_0.1.2 Formula_1.2-4 geneplotter_1.70.0
[91] lubridate_1.7.10 DBI_1.1.1 formatR_1.11 dbplyr_2.1.1 ComplexHeatmap_2.8.0
[96] MASS_7.3-54 Matrix_1.3-4 car_3.0-11 cli_3.0.1 igraph_1.2.6
[101] pkgconfig_2.0.3 foreign_0.8-81 xml2_1.3.2 foreach_1.5.1 svglite_2.0.0
[106] annotate_1.70.0 rngtools_1.5 XVector_0.32.0 rvest_1.0.1 doRNG_1.8.2
[111] digest_0.6.27 ConsensusClusterPlus_1.56.0 Biostrings_2.60.2 cellranger_1.1.0 htmlTable_2.2.1
[116] edgeR_3.34.0 curl_4.3.2 gtools_3.9.2 rjson_0.2.20 nlme_3.1-152
[121] lifecycle_1.0.0 jsonlite_1.7.2 carData_3.0-4 limma_3.48.3 fansi_0.5.0
[126] pillar_1.6.2 lattice_0.20-44 Nozzle.R1_1.1-1 KEGGREST_1.32.0 fastmap_1.1.0
[131] httr_1.4.2 survival_3.2-13 GO.db_3.13.0 glue_1.4.2 zip_2.2.0
[136] png_0.1-7 iterators_1.0.13 bit_4.0.4 stringi_1.7.4 blob_1.2.2
[141] latticeExtra_0.6-29 caTools_1.18.2 memoise_2.0.0
So would you recommend still using Log2fold change as a measurement for effect size?