DTU analysis with tximport-DRIM-Seq-DEXSeq-stageR workflow starting from StrinTie output
1
0
Entering edit mode
@f3036fa1
Last seen 2.9 years ago
Finland

Hello,

I am performing DTU analysis following "Swimming downstream: statistical analysis of differential transcript usage following Salmon quantification" publication workflow with own data (Link). My data include patient sample data, 21 samples on each 3 groups. I have used StringTie produced .ctab files from each sample as input for the workflow. First rows showed below:

>t_id   chr strand  start   end t_name  num_exons   length  gene_id gene_name   cov FPKM    
1   chr1    +   11874   14409   rna0    3   1652    DDX11L1 DDX11L1 0.286368    0.090211  
2   chr1    -   14362   29370   rna1    11  1769    WASH7P  WASH7P  5.673654`

I used tximport to download the data into R and to create txi object with transcript-to-gene-mapping object. Then I followed the workflow where Tx2gene was used as transcript-to-gene-mapping object. In this modification, t_name correspond to TXNAME and gene_name to GENEID. Tx2gene:

>A tibble: 76,103 × 3
   t_name         gene_name    ntx    
   <chr>          <chr>        <table>
 1 rna0           DDX11L1      1      
 2 rna1           WASH7P       1      
 3 rna3           MIR6859-1    3      
 4 rna2           MIR6859-1    3      
 5 rna4           MIR6859-1    3      
 6 rna5           MIR1302-2    2

Now, my problem is that for some reason DRIMSeq object inform me to have only 1 gene and 63 samples. The used code is below:

#DEXSeq_stringtie.csv file include the path to the files 

DEXSeq_stringtie <- read_csv("DEXSeq_stringtie.csv")

path<-DEXSeq_stringtie$Path

tx2gene <- tmp[, c("t_name", "gene_name")]

txi <- tximport(path, type = "stringtie", tx2gene = tx2gene, txOut=TRUE, countsFromAbundance="scaledTPM")

#This was modified from both workflows

*reading in files with read_tsv
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 *

cts <- txi$counts

cts <- cts[rowSums(cts) > 0,]

#Checking data

 all(rownames(cts) %in% tx2gene$t_name)

[1] TRUE

tx2gene <- tx2gene[match(rownames(cts),tx2gene$t_name),]

 all(rownames(cts) == tx2gene$t_name)

[1] TRUE

#Adding metadata

 samps<-Rmetadata_DRIMSeq

#Variables to factors

samps$group <- factor(samps$group)

samps$patient<- factor(samps$patient)

samps$diabetes<-factor(samps$diabetes)

samps<-as.data.frame(samps)

#DRIMSeq object
colnames(cts)<-samps$sample_id

counts <- data.frame(gene_id=tx2gene$gene_name, feature_id=tx2gene$t_name, cts)

d <- dmDSdata(counts=counts, samples=samps)

d

>An object of class dmDSdata 
**with 1 genes and 63 samples** * data accessors: counts(), samples()

Would you think any reason why the object is giving me only 1 gene with the object? I appreciate your help!

sessionInfo(
R version 4.0.0 (2020-04-24)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: CentOS Linux 7 (Core)

Matrix products: default
BLAS:   /usr/local/apps/linux-centos7-x86_64/gcc-4.8.5/r/4.0.0-rmu2ifmqdxpwpvbr62zkux2ex77isony/rlib/R/lib/libRblas.so
LAPACK: /usr/local/apps/linux-centos7-x86_64/gcc-4.8.5/r/4.0.0-rmu2ifmqdxpwpvbr62zkux2ex77isony/rlib/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8      
 [2] LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8       
 [4] LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8   
 [6] LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8      
 [8] LC_NAME=C                 
 [9] LC_ADDRESS=C              
[10] LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8
[12] LC_IDENTIFICATION=C       

attached base packages:
[1] stats4    parallel  stats     graphics 
[5] grDevices utils     datasets  methods  
[9] base     

other attached packages:
 [1] tximport_1.18.0            
 [2] stageR_1.12.0              
 [3] DEXSeq_1.36.0              
 [4] RColorBrewer_1.1-2         
 [5] AnnotationDbi_1.52.0       
 [6] DESeq2_1.30.1              
 [7] SummarizedExperiment_1.20.0
 [8] GenomicRanges_1.42.0       
 [9] GenomeInfoDb_1.26.7        
[10] IRanges_2.24.1             
[11] S4Vectors_0.28.1           
[12] MatrixGenerics_1.2.1       
[13] matrixStats_0.60.0         
[14] Biobase_2.50.0             
[15] BiocGenerics_0.36.1        
[16] BiocParallel_1.24.1        
[17] DRIMSeq_1.18.0             
[18] edgeR_3.32.1               
[19] limma_3.46.0               

loaded via a namespace (and not attached):
 [1] bitops_1.0-7            
 [2] bit64_4.0.5             
 [3] progress_1.2.2          
 [4] httr_1.4.2              
 [5] tools_4.0.0             
 [6] utf8_1.2.2              
 [7] R6_2.5.0                
 [8] DBI_1.1.1               
 [9] colorspace_2.0-2        
[10] tidyselect_1.1.1        
[11] gridExtra_2.3           
[12] prettyunits_1.1.1       
[13] bit_4.0.4               
[14] curl_4.3.2              
[15] compiler_4.0.0          
[16] cli_3.0.1               
[17] xml2_1.3.2              
[18] DelayedArray_0.16.3     
[19] rtracklayer_1.50.0      
[20] scales_1.1.1            
[21] genefilter_1.72.1       
[22] askpass_1.1             
[23] rappdirs_0.3.3          
[24] Rsamtools_2.6.0         
[25] stringr_1.4.0           
[26] DOSE_3.16.0             
[27] XVector_0.30.0          
[28] pkgconfig_2.0.3         
[29] dbplyr_2.1.1            
[30] fastmap_1.1.0           
[31] rlang_0.4.11            
[32] rstudioapi_0.13         
[33] RSQLite_2.2.7           
[34] generics_0.1.0          
[35] hwriter_1.3.2           
[36] GOSemSim_2.16.1         
[37] dplyr_1.0.7             
[38] RCurl_1.98-1.3          
[39] magrittr_2.0.1          
[40] GO.db_3.12.1            
[41] GenomeInfoDbData_1.2.4  
[42] Matrix_1.3-4            
[43] Rcpp_1.0.7              
[44] munsell_0.5.0           
[45] fansi_0.5.0             
[46] lifecycle_1.0.0         
[47] stringi_1.7.3           
[48] yaml_2.2.1              
[49] zlibbioc_1.36.0         
[50] plyr_1.8.6              
[51] qvalue_2.22.0           
[52] BiocFileCache_1.14.0    
[53] grid_4.0.0              
[54] blob_1.2.2              
[55] DO.db_2.9               
[56] crayon_1.4.1            
[57] lattice_0.20-44         
[58] Biostrings_2.58.0       
[59] splines_4.0.0           
[60] GenomicFeatures_1.42.3  
[61] annotate_1.68.0         
[62] hms_1.1.0               
[63] locfit_1.5-9.4          
[64] pillar_1.6.2            
[65] fgsea_1.16.0            
[66] geneplotter_1.68.0      
[67] reshape2_1.4.4          
[68] biomaRt_2.46.3          
[69] fastmatch_1.1-3         
[70] XML_3.99-0.6            
[71] glue_1.4.2              
[72] data.table_1.14.0       
[73] vctrs_0.3.8             
[74] gtable_0.3.0            
[75] openssl_1.4.4           
[76] purrr_0.3.4             
[77] assertthat_0.2.1        
[78] cachem_1.0.5            
[79] ggplot2_3.3.5           
[80] xtable_1.8-4            
[81] survival_3.2-11         
[82] tibble_3.1.3            
[83] GenomicAlignments_1.26.0
[84] memoise_2.0.0           
[85] statmod_1.4.36          
[86] ellipsis_0.3.2)
RNA-seq DRIMSeq DEXSeq rnaseqDTU • 1.6k views
ADD COMMENT
0
Entering edit mode

Ok, I reconstructed my initial input to tximport and I think dmDSdata object is as it should.

Prepping sample for tximport

files <- file.path(path)

names(files) <- samps$sample_id

head(files)

txi <- tximport(files, type = "stringtie", tx2gene = tx2gene, txOut=TRUE, countsFromAbundance="scaledTPM")

..................

d

An object of class dmDSdata with 26895 genes and 63 samples

  • data accessors: counts(), samples()
ADD REPLY
0
Entering edit mode
@mikelove
Last seen 1 day ago
United States

What do you get for:

head(table(counts$gene_id), 40)

And what about dim(d) at the end?

ADD COMMENT
0
Entering edit mode

head(table(counts$gene_id), 40)

dim(d)

NULL

ADD REPLY
0
Entering edit mode

To be honest I'm totally confused why dmDSdata is giving you only one gene. Maybe the DRIMSeq authors can weigh in.

ADD REPLY
0
Entering edit mode

Ok, thank you anyway for your time!

ADD REPLY

Login before adding your answer.

Traffic: 618 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6