Proper: Simulation for low gene counts Results yield NaN
0
0
Entering edit mode
Carl • 0
@f7c2710a
Last seen 3.6 years ago
United States

Good morning,

I would like to ask for help when running PROPER. When I set the ngenes 600, the results table returns NaN. for higher countsof ~16k or more I get results just fine.

Are there any adjustments that i can make when using gene counts in the 100's?

Thank you,

Carl

# References to Bioconductor

# Manual              https://www.bioconductor.org/packages/release/bioc/manuals/PROPER/man/PROPER.pdf
# Article & Samples   https://www.bioconductor.org/packages/release/bioc/vignettes/PROPER/inst/doc/PROPER.pdf

#options(pkgType = "binary")
#if (!requireNamespace("BiocManager", quietly = TRUE))
#  install.packages("BiocManager")
#options(pkgType = "binary")
#BiocManager::install("PROPER")


library(PROPER)

## specify some parameters: generate baseline expression and
## dispersion from Bottom data, and specify a function for
## alternative log fold changes.
fun.lfc=function(x) rnorm(x, mean= 12, sd= 1.5)

# Key points
# Use the latest Bioconductor release version. Ensure that your packages are up-to-date.

# Post all of your R code.

# Include a copy of any error or warning messages that appeared in R.

# If your question involves experimental data, include an example of the sample-level covariate data (one row per sample, one column per covariate). If it would help answer your technical question, and can be shared, explain the motivation behind your experiment.

# Always paste the output of sessionInfo() at the end of your post.

# If possible, provide a minimal, self-contained example that someone else can cut-and-paste into a new R session to reproduce your problem.

#If the example produces an error, provide the output of traceback() after the error occurs.
# 16000

simOptions=RNAseq.SimOptions.2grp(ngenes= 600, seqDepth=2000000,lBaselineExpr= "cheung",
                                  lOD="cheung", p.DE=0.05, lfc=fun.lfc)
summary(simOptions)

simRes = runSims(Nreps=c(2,3,4,5), sim.opts = simOptions, nsims=500,
                 DEmethod= "edgeR")


powers = comparePower(simRes)
power.seqDepth(simRes, powers)


#plotPower(powers)
plotAll(powers)



######## SS=2,2 SS=3,3 SS=4,4 SS=5,5
# 0.2    NaN    NaN    NaN    NaN
# 0.5    NaN    NaN    NaN    NaN
# 1      NaN    NaN    NaN    NaN
# 2      NaN    NaN    NaN    NaN
# 5      NaN    NaN    NaN    NaN
# 10     NaN    NaN    NaN    NaN



# sessionInfo()
# R version 4.0.2 (2020-06-22)
# Platform: x86_64-apple-darwin17.0 (64-bit)
# Running under: macOS  10.16
# 
# Matrix products: default
# LAPACK: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRlapack.dylib
# 
# locale:
#   [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
# 
# attached base packages:
#   [1] stats     graphics  grDevices utils     datasets  methods   base     
# 
# other attached packages:
#   [1] edgeR_3.30.3  limma_3.44.3  PROPER_1.20.0
# 
# loaded via a namespace (and not attached):
#   [1] Rcpp_1.0.6          locfit_1.5-9.4      lattice_0.20-44     packrat_0.6.0       digest_0.6.27       grid_4.0.2          HDInterval_0.2.2   
# [8] evaluate_0.14       rlang_0.4.11        rmarkdown_2.8       tools_4.0.2         xfun_0.22           yaml_2.2.1          compiler_4.0.2     
# [15] BiocManager_1.30.15 htmltools_0.5.1.1   knitr_1.33 #
PROPER • 580 views
ADD COMMENT

Login before adding your answer.

Traffic: 317 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6