DEP - Run filter_missval() with a threshold ranging from 0 to 3
0
0
Entering edit mode
rina ▴ 30
@rina-16738
Last seen 15 months ago
France

Hi

I am trying to use DEP to identify differentially expressed proteins in treated and untreated samples. I have created a SummarizedExperiment out of my data, however, at the filtering step I am getting an error that I cannot understand. Even if I am setting a filtering threshold in the proposed range, the function returns an error ...


less_stringent_filter <- filter_missval(data_se, thr = 0)
Error in filter_missval(data_se, thr = 0) : 
  invalid filter threshold applied
Run filter_missval() with a threshold ranging from 0 to  3

I went into the source code to see how the thresholds are calculated and they are based on replicates. I run the source code separately and indeed the function should not return an error. I would appreciate any kind of tips on how to solve this.


> sessionInfo()
R version 4.0.3 (2020-10-10)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 20.04.2 LTS

Matrix products: default
BLAS:   /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.9.0
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.9.0

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C               LC_TIME=nb_NO.UTF-8       
 [4] LC_COLLATE=en_US.UTF-8     LC_MONETARY=nb_NO.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=nb_NO.UTF-8       LC_NAME=C                  LC_ADDRESS=C              
[10] LC_TELEPHONE=C             LC_MEASUREMENT=nb_NO.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
 [1] stats4    parallel  grid      stats     graphics  grDevices utils     datasets 
 [9] methods   base     

other attached packages:
 [1] SummarizedExperiment_1.20.0 GenomicRanges_1.42.0        GenomeInfoDb_1.26.2        
 [4] IRanges_2.24.1              S4Vectors_0.28.1            MatrixGenerics_1.2.1       
 [7] matrixStats_0.58.0          vsn_3.58.0                  Biobase_2.50.0             
[10] BiocGenerics_0.36.0         ggpubr_0.4.0                RColorBrewer_1.1-2         
[13] VennDiagram_1.6.20          futile.logger_1.4.3         proBatch_1.3.0             
[16] forcats_0.5.1               stringr_1.4.0               dplyr_1.0.4                
[19] purrr_0.3.4                 readr_1.4.0                 tidyr_1.1.3                
[22] tibble_3.1.0                ggplot2_3.3.3               tidyverse_1.3.0            
[25] DEP_1.12.0                 

loaded via a namespace (and not attached):
  [1] utf8_1.1.4             shinydashboard_0.7.1   gmm_1.6-6             
  [4] tidyselect_1.1.0       lme4_1.1-26            RSQLite_2.2.3         
  [7] AnnotationDbi_1.52.0   htmlwidgets_1.5.3      BiocParallel_1.24.1   
 [10] norm_1.0-9.5           munsell_0.5.0          codetools_0.2-16      
 [13] preprocessCore_1.52.1  statmod_1.4.35         DT_0.17               
 [16] withr_2.4.1            colorspace_2.0-0       ggfortify_0.4.11      
 [19] knitr_1.31             rstudioapi_0.13        ggsignif_0.6.1        
 [22] mzID_1.28.0            labeling_0.4.2         GenomeInfoDbData_1.2.4
 [25] farver_2.1.0           bit64_4.0.5            pheatmap_1.0.12       
 [28] rprojroot_2.0.2        vctrs_0.3.6            generics_0.1.0        
 [31] lambda.r_1.2.4         xfun_0.21              fastcluster_1.1.25    
 [34] R6_2.5.0               doParallel_1.0.16      clue_0.3-58           
 [37] locfit_1.5-9.4         bitops_1.0-6           cachem_1.0.4          
 [40] DelayedArray_0.16.2    assertthat_0.2.1       promises_1.2.0.1      
 [43] scales_1.1.1           nnet_7.3-14            gtable_0.3.0          
 [46] sva_3.38.0             Cairo_1.5-12.2         affy_1.68.0           
 [49] WGCNA_1.70-3           sandwich_3.0-0         rlang_0.4.10          
 [52] genefilter_1.72.1      mzR_2.24.1             GlobalOptions_0.1.2   
 [55] splines_4.0.3          rstatix_0.7.0          lazyeval_0.2.2        
 [58] impute_1.64.0          broom_0.7.5            checkmate_2.0.0       
 [61] abind_1.4-5            BiocManager_1.30.10    reshape2_1.4.4        
 [64] modelr_0.1.8           backports_1.2.1        httpuv_1.5.5          
 [67] Hmisc_4.5-0            tools_4.0.3            affyio_1.60.0         
 [70] ellipsis_0.3.1         dynamicTreeCut_1.63-1  MSnbase_2.16.1        
 [73] Rcpp_1.0.6             plyr_1.8.6             base64enc_0.1-3       
 [76] zlibbioc_1.36.0        RCurl_1.98-1.2         rpart_4.1-15          
 [79] viridis_0.5.1          GetoptLong_1.0.5       cowplot_1.1.1         
 [82] zoo_1.8-8              haven_2.3.1            cluster_2.1.0         
 [85] fs_1.5.0               tinytex_0.30           magrittr_2.0.1        
 [88] futile.options_1.0.1   data.table_1.14.0      openxlsx_4.2.3        
 [91] circlize_0.4.12        reprex_1.0.0           pcaMethods_1.82.0     
 [94] mvtnorm_1.1-1          ProtGenerics_1.22.0    pkgload_1.2.0         
 [97] hms_1.0.0              mime_0.10              xtable_1.8-4          
[100] XML_3.99-0.5           rio_0.5.26             jpeg_0.1-8.1          
[103] readxl_1.3.1           gridExtra_2.3          shape_1.4.5           
[106] testthat_3.0.2         compiler_4.0.3         ncdf4_1.17            
[109] crayon_1.4.1           minqa_1.2.4            htmltools_0.5.1.1     
[112] mgcv_1.8-33            later_1.1.0.1          Formula_1.2-4         
[115] lubridate_1.7.10       pvca_1.30.0            DBI_1.1.1             
[118] formatR_1.7            corrplot_0.84          dbplyr_2.1.0          
[121] ComplexHeatmap_2.7.1   MASS_7.3-53            tmvtnorm_1.4-10       
[124] boot_1.3-25            car_3.0-10             wesanderson_0.3.6     
[127] Matrix_1.2-18          cli_2.3.1              imputeLCMD_2.0        
[130] pkgconfig_2.0.3        foreign_0.8-79         MALDIquant_1.19.3     
[133] xml2_1.3.2             foreach_1.5.1          annotate_1.68.0       
[136] XVector_0.30.0         rvest_0.3.6            digest_0.6.27         
[139] cellranger_1.1.0       htmlTable_2.1.0        edgeR_3.32.1          
[142] curl_4.3               shiny_1.6.0            rjson_0.2.20          
[145] nloptr_1.2.2.2         lifecycle_1.0.0        nlme_3.1-149          
[148] jsonlite_1.7.2         carData_3.0-4          desc_1.2.0            
[151] viridisLite_0.3.0      limma_3.46.0           fansi_0.4.2           
[154] pillar_1.5.0           lattice_0.20-41        fastmap_1.1.0         
[157] httr_1.4.2             survival_3.2-7         GO.db_3.12.1          
[160] glue_1.4.2             zip_2.1.1              png_0.1-7             
[163] iterators_1.0.13       bit_4.0.4              stringi_1.5.3         
[166] blob_1.2.1             latticeExtra_0.6-29    memoise_2.0.0
proteomics DEP • 1.4k views
ADD COMMENT
0
Entering edit mode

Hi, can we have a look at your data_se object ?

ADD REPLY
0
Entering edit mode

Hi, would that be enough? Not sure what I should show exactly.

class: SummarizedExperiment 
dim: 6853 27 
metadata(0):
assays(1): ''
rownames(6853): B8ZZ54 P63220 Q6FGH5 ... Q15911 C0JYZ2
rowData names(87): Protein.FDR.Confidence..Combined Master ... name ID
colnames(27): F1 F2 ... F101 F102
colData names(4): label ID condition replicate
ADD REPLY
0
Entering edit mode

Yes thanks. And what is the result of max(colData(data_se)$replicate) ? You said you ran the source code separately and did it work ?

ADD REPLY
0
Entering edit mode

It returns 3. I did not work with the source code, but I run the code chunk that returned the error in order to confirm that the range of threshold was the correct one.

ADD REPLY

Login before adding your answer.

Traffic: 909 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6