Entering edit mode
Hi,
I was using MAST zlm function to fit scRNA-Seq (logCPM) data. The model I used is:
zlm(~ disease +patient, sca). Both disease and patient are categorical variables. Disease is the disease type and patient is patient ID. We were trying to assess the patients fixed effect. However, we got the warning: Coefficients patient207, patient230 are never estimible and will be dropped.
table(patient, disease)
AD N PV
165 0 0 204
169 0 1057 0
170 282 0 0
173 0 0 99
194 0 0 85
198 114 0 0
199 0 0 195
204 0 662 0
207 0 412 0
211 0 0 216
222 0 0 353
230 592 0 0
So when I tried to remove patient 207 and 230 to rerun the model, similar warning appears: Coefficients patient198, patient204 are never estimible and will be dropped. Any suggestions? Thanks!
sessionInfo( )
R version 4.0.3 (2020-10-10)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 19041)
Matrix products: default
locale:
[1] LC_COLLATE=English_United States.1252 LC_CTYPE=English_United States.1252
[3] LC_MONETARY=English_United States.1252 LC_NUMERIC=C
[5] LC_TIME=English_United States.1252
attached base packages:
[1] parallel stats4 stats graphics grDevices utils datasets methods base
other attached packages:
[1] SeuratObject_4.0.0 Seurat_4.0.0 MAST_1.16.0
[4] SingleCellExperiment_1.12.0 SummarizedExperiment_1.20.0 Biobase_2.50.0
[7] GenomicRanges_1.42.0 GenomeInfoDb_1.26.1 IRanges_2.24.0
[10] S4Vectors_0.28.0 BiocGenerics_0.36.0 MatrixGenerics_1.2.0
[13] matrixStats_0.57.0 ggplot2_3.3.2 dplyr_1.0.2
loaded via a namespace (and not attached):
[1] Rtsne_0.15 minqa_1.2.4 colorspace_2.0-0
[4] deldir_0.2-3 ellipsis_0.3.1 ggridges_0.5.2
[7] XVector_0.30.0 spatstat.data_1.5-2 rstudioapi_0.13
[10] leiden_0.3.5 listenv_0.8.0 farver_2.0.3
[13] ggrepel_0.8.2 fansi_0.4.1 codetools_0.2-16
[16] splines_4.0.3 knitr_1.30 polyclip_1.10-0
[19] jsonlite_1.7.1 nloptr_1.2.2.2 ica_1.0-2
[22] cluster_2.1.0 png_0.1-7 uwot_0.1.9
[25] shiny_1.5.0 sctransform_0.3.2 compiler_4.0.3
[28] httr_1.4.2 assertthat_0.2.1 lazyeval_0.2.2
[31] Matrix_1.2-18 fastmap_1.0.1 cli_2.2.0
[34] later_1.1.0.1 htmltools_0.5.0 tools_4.0.3
[37] igraph_1.2.6 gtable_0.3.0 glue_1.4.2
[40] GenomeInfoDbData_1.2.4 RANN_2.6.1 reshape2_1.4.4
[43] spatstat_1.64-1 Rcpp_1.0.5 scattermore_0.7
[46] vctrs_0.3.5 nlme_3.1-149 lmtest_0.9-38
[49] xfun_0.19 stringr_1.4.0 globals_0.14.0
[52] lme4_1.1-25 mime_0.9 miniUI_0.1.1.1
[55] lifecycle_0.2.0 irlba_2.3.3 goftest_1.2-2
[58] statmod_1.4.35 future_1.20.1 zlibbioc_1.36.0
[61] MASS_7.3-53 zoo_1.8-8 scales_1.1.1
[64] spatstat.utils_1.17-0 promises_1.1.1 RColorBrewer_1.1-2
[67] yaml_2.2.1 reticulate_1.18 pbapply_1.4-3
[70] gridExtra_2.3 rpart_4.1-15 stringi_1.5.3
[73] boot_1.3-25 rlang_0.4.9 pkgconfig_2.0.3
[76] bitops_1.0-6 evaluate_0.14 lattice_0.20-41
[79] tensor_1.5 ROCR_1.0-11 purrr_0.3.4
[82] patchwork_1.1.0 htmlwidgets_1.5.2 labeling_0.4.2
[85] cowplot_1.1.0 tidyselect_1.1.0 parallelly_1.21.0
[88] RcppAnnoy_0.0.18 plyr_1.8.6 magrittr_2.0.1
[91] R6_2.5.0 generics_0.1.0 DelayedArray_0.16.0
[94] mgcv_1.8-33 pillar_1.4.7 withr_2.3.0
[97] fitdistrplus_1.1-1 survival_3.2-7 abind_1.4-5
[100] RCurl_1.98-1.2 tibble_3.0.4 future.apply_1.6.0
[103] crayon_1.3.4 KernSmooth_2.23-17 plotly_4.9.2.1
[106] rmarkdown_2.5 grid_4.0.3 data.table_1.13.2
[109] digest_0.6.27 xtable_1.8-4 tidyr_1.1.2
[112] httpuv_1.5.4 munsell_0.5.0 viridisLite_0.3.0
[115] sessioninfo_1.1.1
Duplicate