Hi ,
I am working on longitudinal analysis. I have to perform DE between 2 groups of patients between T0-->T1
The variables in my design are Time (Visit1==T0, Visit2==T1), Sex(Male, Female), Status(RA, C) and Subject(Patient Numbers).
Samples are paired and each group has male and female samples This is how I set up my design matrix.
#MetaData
LTR_ID Visit Disease Sex Subject
LTR010 1 0 F 1
LTR093 2 0 F 1
LTR012 1 1 M 1
LTR094 2 1 M 1
LTR017 1 1 M 2
LTR095 2 1 M 2
LTR096 1 1 F 3
LTR097 2 1 F 3
design <- model.matrix(~status + sex + status:subject + status:time)
colnames(design)
[1] "(Intercept)" "statusRA" "sexM" "statusC:subject2"
[5] "statusRA:subject2" "statusC:subject3" "statusRA:subject3" "statusC:subject4"
[9] "statusRA:subject4" "statusC:subject5" "statusRA:subject5" "statusC:subject6"
[13] "statusRA:subject6" "statusC:subject7" "statusRA:subject7" "statusC:subject8"
[17] "statusRA:subject8" "statusC:subject9" "statusRA:subject9" "statusC:subject10"
[21] "statusRA:subject10" "statusRA:subject11" "statusRA:subject12" "statusRA:subject13"
[25] "statusRA:subject14" "statusRA:subject15" "statusRA:subject16" "statusRA:subject17"
[29] "statusRA:subject18" "statusRA:subject19" "statusRA:subject20" "statusRA:subject21"
[33] "statusRA:subject22" "statusRA:subject23" "statusC:time2" "statusRA:time2"
#testing for DE with patients at T0 vs T1
y <- estimateDisp(y, design)
==>Error in glmFit.default(sely, design, offset = seloffset, dispersion = 0.05, :
Design matrix not of full rank. The following coefficients not estimable: statusRA:subject19
I get the above error. I am doing a pair wise analysis where I want to check for DE between patients at T0 vs T1. I need to account for Sex as a covariate and do the analysis. Looks like I am setting up the design matrix wrong. I have 2 questions, Does doing pairwise analysis account for gender effect? If not, What would be the best way to set ithe design?