Entering edit mode
Kajus Baidžajevas
▴
10
@kajus-baidzajevas-12185
Last seen 7.9 years ago
University of Sheffield
Hello,
I am visualising RNA-seq data in reactome pathways using ReactomePA. I have a range of gene expression fold changes (FCs) among multiple conditions.
> cond1FC 335 338 6288 948 949 -5 -3 0 1 4 > cond2FC 335 338 6288 948 949 -0.30 -0.10 -0.05 0.05 0.06
viewPathway in ReactomePA (and by extension netplot in DOSE) return images with nodes and FC scales coloured adjusted to the range of FC values in each condition separately.
> viewPathway("Scavenging by Class B Receptors", organism = "human", readable = TRUE, foldChange = cond1FC, vertex.label.font = 3, vertex.label.cex = 0.7, col.bin = 10, legend.x = 1, legend.y = 1, fixed = TRUE, vertex.size = 10) 'select()' returned 1:1 mapping between keys and columns 'select()' returned 1:1 mapping between keys and columns
> viewPathway("Scavenging by Class B Receptors", organism = "human", readable = TRUE, foldChange = cond2FC, vertex.label.font = 3, vertex.label.cex = 0.7, col.bin = 10, legend.x = 1, legend.y = 1, fixed = TRUE, vertex.size = 10) 'select()' returned 1:1 mapping between keys and columns 'select()' returned 1:1 mapping between keys and columns
Is there a way that the colour range could be customised/standardised (in the case above from -5 to 5 fold change) so that each FC value would have the same shade in each condition despite widely different FC value ranges in each condition?
> sessionInfo() R version 3.3.1 (2016-06-21) Platform: x86_64-w64-mingw32/x64 (64-bit) Running under: Windows 7 x64 (build 7601) Service Pack 1 locale: [1] LC_COLLATE=English_United Kingdom.1252 [2] LC_CTYPE=English_United Kingdom.1252 [3] LC_MONETARY=English_United Kingdom.1252 [4] LC_NUMERIC=C [5] LC_TIME=English_United Kingdom.1252 attached base packages: [1] stats4 parallel stats graphics grDevices utils datasets [8] methods base other attached packages: [1] BiocInstaller_1.24.0 graphite_1.20.1 ReactomePA_1.18.1 [4] DOSE_3.0.9 org.Hs.eg.db_3.4.0 goseq_1.26.0 [7] geneLenDataBase_1.10.0 BiasedUrn_1.07 RpsiXML_2.16.0 [10] hypergraph_1.46.0 RBGL_1.50.0 annotate_1.52.1 [13] XML_3.98-1.5 AnnotationDbi_1.36.1 IRanges_2.8.1 [16] S4Vectors_0.12.1 Biobase_2.34.0 graph_1.52.0 [19] BiocGenerics_0.20.0 loaded via a namespace (and not attached): [1] Rcpp_0.12.8 lattice_0.20-33 [3] GO.db_3.4.0 Rsamtools_1.26.1 [5] Biostrings_2.42.1 assertthat_0.1 [7] digest_0.6.11 GenomeInfoDb_1.10.2 [9] plyr_1.8.4 RSQLite_1.1-2 [11] ggplot2_2.2.1 zlibbioc_1.20.0 [13] GenomicFeatures_1.26.2 lazyeval_0.2.0 [15] data.table_1.10.0 Matrix_1.2-6 [17] qvalue_2.6.0 devtools_1.12.0 [19] splines_3.3.1 BiocParallel_1.8.1 [21] stringr_1.1.0 igraph_1.0.1 [23] RCurl_1.95-4.8 biomaRt_2.30.0 [25] munsell_0.4.3 fgsea_1.0.2 [27] rtracklayer_1.34.1 mgcv_1.8-12 [29] SummarizedExperiment_1.4.0 tibble_1.2 [31] gridExtra_2.2.1 withr_1.0.2 [33] GenomicAlignments_1.10.0 bitops_1.0-6 [35] rappdirs_0.3.1 grid_3.3.1 [37] nlme_3.1-128 xtable_1.8-2 [39] gtable_0.2.0 DBI_0.5-1 [41] magrittr_1.5 scales_0.4.1 [43] stringi_1.1.2 GOSemSim_2.0.3 [45] XVector_0.14.0 reshape2_1.4.2 [47] DO.db_2.9 rvcheck_0.0.5 [49] fastmatch_1.0-4 tools_3.3.1 [51] colorspace_1.3-2 reactome.db_1.58.0 [53] GenomicRanges_1.26.2 memoise_1.0.0
> rvcheck::check_bioc("ReactomePA") package is up-to-date release version $package [1] "ReactomePA" $installed_version [1] "1.18.1" $latest_version [1] "1.18.1" $up_to_date [1] TRUE > rvcheck::check_bioc("reactome.db") package is up-to-date release version $package [1] "reactome.db" $installed_version [1] "1.58.0" $latest_version [1] "1.58.0" $up_to_date [1] TRUE > rvcheck::check_bioc("DOSE") package is up-to-date release version $package [1] "DOSE" $installed_version [1] "3.0.9" $latest_version [1] "3.0.9" $up_to_date [1] TRUE
> rvcheck::check_bioc("graphite") package is up-to-date release version $package [1] "graphite" $installed_version [1] "1.20.1" $latest_version [1] "1.20.1" $up_to_date [1] TRUE
Thank you,
Kajus
Currently, it is not supported.