I have been a regular user of the wateRmelon
package since its inception, and have encountered new errors with wateRmelon_1.18.0
. I was wondering if anyone has run into the same issue. Normalization using dasen()
on the new Illumina EPIC chips (aka 850K) gives the following error:
dasen(melon.LumiSet) Error in (function (od, vd) : object and replacement value dimnames differ
This is a methyLumiSet
object:
Object Information: MethyLumiSet (storageMode: lockedEnvironment) assayData: 866895 features, 1919 samples element names: betas, methylated, pvals, unmethylated protocolData: none phenoData sampleNames: 11 23 ... 1050 (1919 total) varLabels: PlateNumber Position ... barcodes (42 total) varMetadata: labelDescription featureData featureNames: cg00000029 cg00000103 ... rs9839873 (866895 total) fvarLabels: Probe_ID DESIGN COLOR_CHANNEL fvarMetadata: labelDescription experimentData: use 'experimentData(object)' Annotation: IlluminaHumanMethylationEpic Major Operation History: submitted finished 1 2017-01-08 20:00:02 2017-01-08 21:14:54 2 2017-01-08 20:00:02 2017-01-08 21:14:54 3 2017-01-08 21:15:06 2017-01-08 21:22:30 command 1 NChannelSetToMethyLumiSet2(NChannelSet = dats, parallel = parallel, 2 n = n, oob = oob) 3 Subset of 866895 features.
There have been a number of changes to key functions in methylation-related packages (e.g., ChAMP
) to deal with the EPIC chip, so I thought that was the most likely contributing factor. So I went back to some 450K data from a few months ago that had been normalized using wateRmelon's dasen()
without any previous issue, and I ran the same call on a different dataset set (same object name here though).
dasen(melon.LumiSet) Error in rbind(deparse.level, ...) : numbers of columns of arguments do not match
Below is traceback()
result on the previous object (the 850K data), after subsetting it a bit so what is returned is more readable (otherwise it just fills the output with the betas):
traceback() 11: stop("object and replacement value dimnames differ") 10: (function (od, vd) { if (is.null(vd)) od <- seq_along(od) else if (!setequal(od, vd)) stop("object and replacement value dimnames differ") od })(dots[[1L]][[2L]], dots[[2L]][[2L]]) 9: mapply(FUN = f, ..., SIMPLIFY = FALSE) 8: Map(function(od, vd) { if (is.null(vd)) od <- seq_along(od) else if (!setequal(od, vd)) stop("object and replacement value dimnames differ") od }, dimnames(obj), dimnames(value)) 7: .validate_assayDataElementReplace(obj, value) 6: assayDataElementReplace(object, "betas", value) 5: `betas<-`(`*tmp*`, value = c(0.765455893254262, 0.346322423811164, 0.79320412999323, 0.84092723540146, 0.84896966594138, 0.834306200303351, 0.901385362090579, 0.884037322605878, 0.60005993815556, 0.787555761543364, 0.900060127125923, 0.1115827362559, 0.432910551304066, 0.806950808334054, 0.603133083995342, 0.855765117635621, 0.864837304162418, 0.78520105886802, 1.14472340361489, 0.438024138169323, 0.904903918466845, 0.856004612884625, 0.872655767543147, 1.34053973279993, 0.294631710362047, 0.806198267564966, 0.741435562805873, 0.24167156574564, 0.848020263964805, 0.596505864455023, 0.838222781251156, 0.830319888734353, 0.884913868105098, 0.359941799245014, 0.961472543633483, 0.770877200155365, 0.777847152847153, 0.350500377170557, 0.842492462311558, 0.84092723540146, 0.831593420583592, 0.841105430183357, 0.881447587354409, 0.884327469911387, 0.60005993815556, 0.751856705985146, 0.874604430379747, 0.1115827362559, 0.421208057191832, 0.84480122324159, 0.610154944639215, 0.889023552700683, 0.781185636249664, 0.837959643552187, 1.14472340361489, 0.359941799245014, 0.905788423153693, 0.865380176353816, 0.887914384320679, 1.26850888264193, 0.327938531960111, 0.788886796006781, 0.762795732178754, 0.231658890102254, 0.88911126995473, 0.414400682843556, 0.845163937483681, 0.822439379369493, 0.878624255514104, 0.393743740060147, 0.961472543633483, 0.789270988132365, 0.743733794295592, 0.34234574114154, 0.83549565436453, 0.84092723540146, 0.824683304972585, 0.810903884847547, 0.892335766423358, 0.907196352979486, 0.60005993815556, 0.767401749414808, 0.88911126995473, 0.1115827362559, 0.381207993361825, 0.806515825094553, 0.904546732075583, 0.87263624109378, 0.788774573733275, 0.811194653299916, 1.14472340361489, 0.421208057191832, 0.914182111200645, 0.893555153017447, 0.9039458622315, 1.26850888264193, 0.284943181818182, 0.813448054848797, 0.697977988226261, 0.24167156574564, 0.874163994502978, 0.531670084301663, 0.841304430936269, 0.822439379369493, 0.886090748230536, 0.387614481944666, 0.800086418050182, 0.770877200155365)) 4: `betas<-`(`*tmp*`, value = c(0.765455893254262, 0.346322423811164, 0.79320412999323, 0.84092723540146, 0.84896966594138, 0.834306200303351, 0.901385362090579, 0.884037322605878, 0.60005993815556, 0.787555761543364, 0.900060127125923, 0.1115827362559, 0.432910551304066, 0.806950808334054, 0.603133083995342, 0.855765117635621, 0.864837304162418, 0.78520105886802, 1.14472340361489, 0.438024138169323, 0.904903918466845, 0.856004612884625, 0.872655767543147, 1.34053973279993, 0.294631710362047, 0.806198267564966, 0.741435562805873, 0.24167156574564, 0.848020263964805, 0.596505864455023, 0.838222781251156, 0.830319888734353, 0.884913868105098, 0.359941799245014, 0.961472543633483, 0.770877200155365, 0.777847152847153, 0.350500377170557, 0.842492462311558, 0.84092723540146, 0.831593420583592, 0.841105430183357, 0.881447587354409, 0.884327469911387, 0.60005993815556, 0.751856705985146, 0.874604430379747, 0.1115827362559, 0.421208057191832, 0.84480122324159, 0.610154944639215, 0.889023552700683, 0.781185636249664, 0.837959643552187, 1.14472340361489, 0.359941799245014, 0.905788423153693, 0.865380176353816, 0.887914384320679, 1.26850888264193, 0.327938531960111, 0.788886796006781, 0.762795732178754, 0.231658890102254, 0.88911126995473, 0.414400682843556, 0.845163937483681, 0.822439379369493, 0.878624255514104, 0.393743740060147, 0.961472543633483, 0.789270988132365, 0.743733794295592, 0.34234574114154, 0.83549565436453, 0.84092723540146, 0.824683304972585, 0.810903884847547, 0.892335766423358, 0.907196352979486, 0.60005993815556, 0.767401749414808, 0.88911126995473, 0.1115827362559, 0.381207993361825, 0.806515825094553, 0.904546732075583, 0.87263624109378, 0.788774573733275, 0.811194653299916, 1.14472340361489, 0.421208057191832, 0.914182111200645, 0.893555153017447, 0.9039458622315, 1.26850888264193, 0.284943181818182, 0.813448054848797, 0.697977988226261, 0.24167156574564, 0.874163994502978, 0.531670084301663, 0.841304430936269, 0.822439379369493, 0.886090748230536, 0.387614481944666, 0.800086418050182, 0.770877200155365)) 3: .local(mns, fudge, ...) 2: dasen(melon.LumiSet[35:70, 1:3]) 1: dasen(melon.LumiSet[35:70, 1:3])
So one thing that stands out to me is that some betas (highlighted) have values outside [0,1]. Now the normalization quit due to error, so maybe these betas have not finished being processed.
Any thoughts?
BiocInstaller::biocValid() * sessionInfo() R version 3.3.2 (2016-10-31) Platform: x86_64-redhat-linux-gnu (64-bit) Running under: CentOS Linux 7 (Core) locale: [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8 [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8 [7] LC_PAPER=en_US.UTF-8 LC_NAME=en_US.UTF-8 [9] LC_ADDRESS=en_US.UTF-8 LC_TELEPHONE=en_US.UTF-8 [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=en_US.UTF-8 attached base packages: [1] splines stats4 parallel stats graphics grDevices utils [8] datasets methods base other attached packages: [1] IlluminaHumanMethylationEPICanno.ilm10b2.hg19_0.6.0 [2] stringr_1.1.0 [3] xlsx_0.5.7 [4] xlsxjars_0.6.1 [5] rJava_0.9-8 [6] wateRmelon_1.18.0 [7] illuminaio_0.16.0 [8] IlluminaHumanMethylation450kanno.ilmn12.hg19_0.6.0 [9] ROC_1.50.0 [10] lumi_2.26.3 [11] methylumi_2.20.0 [12] FDb.InfiniumMethylation.hg19_2.2.0 [13] TxDb.Hsapiens.UCSC.hg19.knownGene_3.2.2 [14] GenomicFeatures_1.26.2 [15] matrixStats_0.51.0 [16] ggplot2_2.2.1 [17] reshape2_1.4.2 [18] scales_0.4.1 [19] ChAMP_2.4.1 [20] IlluminaHumanMethylationEPICmanifest_0.3.0 [21] Illumina450ProbeVariants.db_1.10.0 [22] DMRcate_1.10.2 [23] DMRcatedata_1.10.1 [24] DSS_2.14.0 [25] bsseq_1.10.0 [26] FEM_3.2.0 [27] graph_1.52.0 [28] org.Hs.eg.db_3.4.0 [29] impute_1.48.0 [30] igraph_1.0.1 [31] corrplot_0.77 [32] marray_1.52.0 [33] limma_3.30.7 [34] Matrix_1.2-7.1 [35] AnnotationDbi_1.36.0 [36] ChAMPdata_2.2.0 [37] minfi_1.20.2 [38] bumphunter_1.14.0 [39] locfit_1.5-9.1 [40] iterators_1.0.8 [41] foreach_1.4.3 [42] Biostrings_2.42.1 [43] XVector_0.14.0 [44] SummarizedExperiment_1.4.0 [45] GenomicRanges_1.26.2 [46] GenomeInfoDb_1.10.2 [47] IRanges_2.8.1 [48] S4Vectors_0.12.1 [49] Biobase_2.34.0 [50] BiocGenerics_0.20.0 [51] BiocInstaller_1.24.0 loaded via a namespace (and not attached): [1] R.utils_2.5.0 [2] RSQLite_1.1-1 [3] htmlwidgets_0.8 [4] grid_3.3.2 [5] trimcluster_0.1-2 [6] BiocParallel_1.8.1 [7] munsell_0.4.3 [8] codetools_0.2-15 [9] preprocessCore_1.36.0 [10] nleqslv_3.0.3 [11] statmod_1.4.27 [12] miniUI_0.1.1 [13] colorspace_1.3-2 [14] fastICA_1.2-0 [15] knitr_1.15.1 [16] robustbase_0.92-7 [17] isva_1.8 [18] biovizBase_1.22.0 [19] diptest_0.75-7 [20] R6_2.2.0 [21] doParallel_1.0.10 [22] flexmix_2.3-13 [23] bitops_1.0-6 [24] reshape_0.8.6 [25] assertthat_0.1 [26] nnet_7.3-12 [27] gtable_0.2.0 [28] affy_1.52.0 [29] sva_3.22.0 [30] ensembldb_1.6.2 [31] genefilter_1.56.0 [32] rtracklayer_1.34.1 [33] lazyeval_0.2.0 [34] acepack_1.4.1 [35] GEOquery_2.40.0 [36] dichromat_2.0-0 [37] checkmate_1.8.2 [38] yaml_2.1.14 [39] backports_1.0.4 [40] httpuv_1.3.3 [41] qvalue_2.6.0 [42] Hmisc_4.0-2 [43] tools_3.3.2 [44] nor1mix_1.2-2 [45] affyio_1.44.0 [46] RColorBrewer_1.1-2 [47] DNAcopy_1.48.0 [48] siggenes_1.48.0 [49] Rcpp_0.12.8 [50] plyr_1.8.4 [51] base64enc_0.1-3 [52] zlibbioc_1.20.0 [53] purrr_0.2.2 [54] RCurl_1.95-4.8 [55] BiasedUrn_1.07 [56] rpart_4.1-10 [57] openssl_0.9.6 [58] cluster_2.0.5 [59] magrittr_1.5 [60] data.table_1.10.0 [61] colourpicker_0.3 [62] mvtnorm_1.0-5 [63] whisker_0.3-2 [64] missMethyl_1.8.0 [65] mime_0.5 [66] xtable_1.8-2 [67] RPMM_1.20 [68] XML_3.98-1.5 [69] mclust_5.2.1 [70] gridExtra_2.2.1 [71] biomaRt_2.30.0 [72] tibble_1.2 [73] KernSmooth_2.23-15 [74] R.oo_1.21.0 [75] htmltools_0.3.5 [76] mgcv_1.8-15 [77] Formula_1.2-1 [78] tidyr_0.6.0 [79] DBI_0.5-1 [80] MASS_7.3-45 [81] fpc_2.1-10 [82] permute_0.9-4 [83] quadprog_1.5-5 [84] R.methodsS3_1.7.1 [85] Gviz_1.18.1 [86] RefFreeEWAS_2.0 [87] GenomicAlignments_1.10.0 [88] registry_0.3 [89] IlluminaHumanMethylation450kmanifest_0.4.0 [90] foreign_0.8-67 [91] plotly_4.5.6.9000 [92] annotate_1.52.1 [93] rngtools_1.2.4 [94] pkgmaker_0.22 [95] multtest_2.30.0 [96] beanplot_1.2 [97] ruv_0.9.6 [98] doRNG_1.6 [99] VariantAnnotation_1.20.2 [100] digest_0.6.11 [101] base64_2.0 [102] htmlTable_1.8 [103] dendextend_1.3.0 [104] kernlab_0.9-25 [105] shiny_0.14.2 [106] Rsamtools_1.26.1 [107] gtools_3.5.0 [108] modeltools_0.2-21 [109] nlme_3.1-128 [110] jsonlite_1.2 [111] viridisLite_0.1.3 [112] BSgenome_1.42.0 [113] lattice_0.20-34 [114] httr_1.2.1 [115] DEoptimR_1.0-8 [116] survival_2.39-5 [117] GO.db_3.4.0 [118] interactiveDisplayBase_1.12.0 [119] shinythemes_1.1.1 [120] prabclus_2.2-6 [121] class_7.3-14 [122] stringi_1.1.2 [123] AnnotationHub_2.6.4 [124] latticeExtra_0.6-28 [125] memoise_1.0.0 [126] dplyr_0.5.0 * Out-of-date packages Package LibPath Installed Built ReposVer bold "bold" "/home/share/R/library" "0.3.5" "3.3.1" "0.4.0" gdsfmt "gdsfmt" "/home/share/R/library" "1.10.0" "3.3.1" "1.10.1" rgl "rgl" "/home/share/R/library" "0.96.0" "3.3.1" "0.97.0" RSQLite "RSQLite" "/home/share/R/library" "1.1-1" "3.3.1" "1.1-2" tidyr "tidyr" "/home/share/R/library" "0.6.0" "3.3.1" "0.6.1" xml2 "xml2" "/home/share/R/library" "1.0.0" "3.3.1" "1.1.0" Repository bold "https://cran.rstudio.com/src/contrib" gdsfmt "https://bioconductor.org/packages/3.4/bioc/src/contrib" rgl "https://cran.rstudio.com/src/contrib" RSQLite "https://cran.rstudio.com/src/contrib" tidyr "https://cran.rstudio.com/src/contrib" xml2 "https://cran.rstudio.com/src/contrib" update with biocLite() * Packages too new for Bioconductor version '3.4' Version LibPath plotly "4.5.6.9000" "/home/share/R/library" readxl "0.1.1.9000" "/home/share/R/library" downgrade with biocLite(c("plotly", "readxl")) Error: 6 package(s) out of date; 2 package(s) too new
Do you have any NAs in your rownames or colnames?
I have created the error by:
Or
My only other suggestion would be to construct a new methylumiset object your data and the normalised matrices. While I look into if BioBase has changed anything or package that imports methylumi changes its behaviour.