Hello, I am using WGCNA to construct co-expression networks.
Scripts:
#!/usr/bin/Rscript
getwd()
workingDir = "."
setwd(workingDir)
library(WGCNA)
options(stringsAsFactors = FALSE)
enableWGCNAThreads()
lnames = load(file ="dataInput.RData")
lnames = load(file ="networkConstruction.RData")
nGenes = ncol(datExpr)
nSamples = nrow(datExpr)
softpower = 6
dissTOM = 1 - TOMsimilarityFromExpr(datExpr, power = softpower)
nSelect = 1500
set.seed(10)
select = sample(nGenes, size = nSelect)
selectTOM = dissTOM[select, select]
selectTree = hclust(as.dist(selectTOM), method = "average")
selectColors = moduleColors[select]
plotDiss = selectTOM^7
diag(plotDiss) = NA
pdf(file = "Plots/networkHeatmap.pdf", width = 15, height = 15)
TOMplot(plotDiss, selectTree, selectColors, main = "Network heatmap plot, selected genes")
dev.off()
save(dissTOM, file = "dissTOM.RData")
MEs = moduleEigengenes(datExpr, moduleColors)$eigengenes
MET = orderMEs(MEs)
pdf(file = "Plots/hubGeneHeatmap.pdf", width = 6, height = 6)
plotEigengeneNetworks(MET, "Eigengene adjacency heatmap", marHeatmap = c(3,4,2,2), plotDendrograms = FALSE, xLabelsAngle = 90)
dev.off()
And I got a error:
Error in hclust(as.dist(selectTOM), method = "average") :
NaN dissimilarity value.
Calls: hclust -> .Call
Execution halte
I double checked and I am sure there is non-numeric fpkm data in my input file. Does anyone meet this problem and solved it?
Thank you!
Dear Petter:
Thank you for your patient explanation.
I have filtered data already by using goodSamplesGenes, before co-expression network construction.
Do you have other suggestion?
Thank you!