I am not sure what the right protocol is for reporting bugs in ExperimentHub, but here we go. It appears that the dataset ExperimentHub()[["EH359"]] (apparently a.k.a. curatedMetagenomicData::ZellerG_2014.marker_abundance) is an ExpressionSet whose exprs is a matrix of characters. The matrix can be converted to numeric, and all elements seem to represent legitimate numbers, but I wonder whether this should not be fixed upstream.
library("ExperimentHub") eh = ExperimentHub() # snapshotDate(): 2016-10-26 zeller = eh[["EH359"]] # see ?curatedMetagenomicData and browseVignettes('curatedMetagenomicData') for documentation # loading from cache ‘/Users/huber//.ExperimentHub/359’ str(exprs(zeller)) # chr [1:130272, 1:156] "1.8115942029" "17.0542635659" "55.5555555556" ... # - attr(*, "dimnames")=List of 2 # ..$ : chr [1:130272] "gi|333126069|ref|NZ_AEMJ01000490.1|:c656-105" #"gi|381149847|ref|NZ_JH604847.1|:635-1279" "gi|331001572|ref|NZ_GL883724.1|:311-544" "gi|381150020|ref|NZ_JH605020.1|:16763-17575" ... # ..$ : chr [1:156] "CCIS00146684ST-4-0" "CCIS00281083ST-3-0" "CCIS02124300ST-4-0" "CCIS02379307ST-4-0" ... nonum = is.na(as.numeric(exprs(zeller))) table(nonum) #nonum # FALSE #20322432 sessionInfo() R version 3.3.1 (2016-06-21) Platform: x86_64-apple-darwin13.4.0 (64-bit) Running under: OS X 10.12.1 (Sierra) locale: [1] C/UTF-8/C/C/C/C attached base packages: [1] stats4 parallel stats graphics grDevices utils datasets [8] methods base other attached packages: [1] curatedMetagenomicData_1.0.0 phyloseq_1.18.0 [3] magrittr_1.5 ExperimentHubData_1.0.0 [5] AnnotationHubData_1.4.0 futile.logger_1.4.3 [7] GenomicRanges_1.26.1 GenomeInfoDb_1.10.0 [9] IRanges_2.8.0 S4Vectors_0.12.0 [11] Biobase_2.34.0 ExperimentHub_1.0.0 [13] AnnotationHub_2.6.0 BiocGenerics_0.20.0 [15] fortunes_1.5-3 loaded via a namespace (and not attached): [1] httr_1.2.1 splines_3.3.1 [3] jsonlite_1.1 foreach_1.4.3 [5] shiny_0.14.2 interactiveDisplayBase_1.12.0 [7] RBGL_1.50.0 Rsamtools_1.26.1 [9] RSQLite_1.0.0 lattice_0.20-34 [11] RUnit_0.4.31 chron_2.3-47 [13] digest_0.6.10 XVector_0.14.0 [15] colorspace_1.2-7 htmltools_0.3.5 [17] httpuv_1.3.3 Matrix_1.2-7.1 [19] plyr_1.8.4 OrganismDbi_1.16.0 [21] GEOquery_2.40.0 XML_3.98-1.4 [23] biomaRt_2.30.0 rBiopaxParser_2.14.0 [25] zlibbioc_1.20.0 xtable_1.8-2 [27] scales_0.4.0 getopt_1.20.0 [29] optparse_1.3.2 BiocParallel_1.8.1 [31] biocViews_1.42.0 mgcv_1.8-15 [33] ggplot2_2.1.0 SummarizedExperiment_1.4.0 [35] GenomicFeatures_1.26.0 survival_2.40-1 [37] mime_0.5 MASS_7.3-45 [39] nlme_3.1-128 xml2_1.0.0 [41] vegan_2.4-1 graph_1.52.0 [43] BiocInstaller_1.24.0 tools_3.3.1 [45] data.table_1.9.6 stringr_1.1.0 [47] munsell_0.4.3 cluster_2.0.5 [49] AnnotationDbi_1.36.0 lambda.r_1.1.9 [51] Biostrings_2.42.0 ade4_1.7-4 [53] rhdf5_2.18.0 grid_3.3.1 [55] RCurl_1.95-4.8 iterators_1.0.8 [57] biomformat_1.2.0 AnnotationForge_1.16.0 [59] igraph_1.0.1 bitops_1.0-6 [61] multtest_2.30.0 gtable_0.2.0 [63] codetools_0.2-15 DBI_0.5-1 [65] curl_2.2 reshape2_1.4.2 [67] R6_2.2.0 GenomicAlignments_1.10.0 [69] rtracklayer_1.34.1 futile.options_1.0.0 [71] permute_0.9-4 ape_3.5 [73] stringi_1.1.2 Rcpp_0.12.7 [75] BiocCheck_1.10.0