Hi,
We have been using DESeq2 for differential expression analysis previously. On the dataset I'm working on (microRNA expression), I don't want to use the normalizing method implemented in the DESeq2 package. I have therefore normalized the dataset myself. Is there any way to use DESeq2 for differential expression analysis of already normalized datasets? If not, do bioconductor have any other R-packages I could use for this purpose?
Thanks for any answers,
Maria
Why would you want to avoid DESEQ2's normalising method? It is good.
Because I'm not really looking at differential expression, I'm looking at microRNA stability in formalin-fixed paraffin embedded tissue compared to matched fresh frozen tissue. I fear that the normalization method in DESeq2 makes some assumptions that are based on biological differential expression between different conditions which are not assumtions I can make when studying stability of microRNA in dead tissue.