I am running the DE analysis using Deseq2. When I plot the PCA of differentially expressed genes ( ntop=500) using the command below, I do not see a clear difference between in treated vs untreated.
de <- rownames(resdds[ (resdds$padj<0.05) & (!is.na((resdds)$pvalue)) & (!is.na(resdds$padj)),]) data <- plotPCA(vsd, intgroup="treat", returnData=TRUE, ntop=500) percentVar <- round(100 * attr(data, "percentVar")) ggplot(data, aes(PC1, PC2, color=treat)) + geom_point(size=3) + geom_text_repel(aes(label=row.names(data))) + xlab(paste0("PC1: ",percentVar[1],"% variance")) + ylab(paste0("PC2: ",percentVar[2],"% variance"))
Are my results are reliable ? Here is the MA Plot and the GO looks god.
Tanks in advance.