Entering edit mode
Ying Chen
▴
110
@ying-chen-4756
Last seen 10.2 years ago
Hi guys,
I tried to use SVA package to identify number of batch factors in my
gene expression dataset. But I ran into an error message:
> library(sva)
> load("myeset.RData")
> pheno <- pData(myeset)
> str(pheno)
'data.frame': 821 obs. of 4 variables:
$ sample : Factor w/ 821 levels "A_837766__U133Plus2",..: 1 2 3 4 5
6 7 8 9 10 ...
$ Source : Factor w/ 6 levels "C1","C2",..: 5 5 5 5 5 5 5 5 5 5 ...
$ CancerType: Factor w/ 28 levels "Anus","Bladder",..: 10 14 14 10 10
14 14 14 11 14 ...
$ Batch : Factor w/ 14 levels "20110909_U133Plus2",..: 1 1 1 1 1 1
1 1 1 1 ...
> edata <- exprs(myeset)
> str(edata)
num [1:18960, 1:821] 4.98 4.95 8.29 4.21 2.9 ...
- attr(*, "dimnames")=List of 2
..$ : chr [1:18960] "100009676_at" "10000_at" "10001_at" "10002_at"
...
..$ : chr [1:821] "A_837766__U133Plus2" "A_937608__U133Plus2"
"A_949340__U133Plus2" "A_949363__U133Plus2" ...
>
> mod <- model.matrix(~as.factor(CancerType), data=pheno)
> mod0 ~ model.matrix(~1,data=pheno)
mod0 ~ model.matrix(~1, data = pheno)
> n.sv = num.sv(edata,mod,method="leek")
Error in diag(dims[2]) - mod %*% solve(t(mod) %*% mod) %*% t(mod) :
non-conformable arrays
Any suggestion?
Thanks a lot,
Ying
> traceback()
1: num.sv(edata, mod, method = "leek")
> sessionInfo()
R version 3.0.1 (2013-05-16)
Platform: x86_64-w64-mingw32/x64 (64-bit)
locale:
[1] LC_COLLATE=English_United States.1252 LC_CTYPE=English_United
States.1252 LC_MONETARY=English_United States.1252
[4] LC_NUMERIC=C LC_TIME=English_United
States.1252
attached base packages:
[1] splines parallel stats graphics grDevices utils
datasets methods base
other attached packages:
[1] pamr_1.54.1 survival_2.37-4 cluster_1.14.4
bladderbatch_1.0.5 sva_3.6.0 mgcv_1.7-24 corpcor_1.6.6
[8] Biobase_2.20.1 BiocGenerics_0.6.0
loaded via a namespace (and not attached):
[1] grid_3.0.1 lattice_0.20-15 Matrix_1.0-12 nlme_3.1-110
tools_3.0.1
>
Confidentiality Note:\ This e-mail, and any attachment
t...{{dropped:14}}
Hi Ying,
I remember I had the same issue with one of my datasets... were you able to find a way to solve this problem? You should have the same size for rows in you pheno data and columns in you expression matrix.
Cheers,