Hi,
I have RNAseq data from an shRNA knockdown screening experiment and I 'm trying to perform differential test using EdgeR. What we are interesting in is the difference between control and treatment (Dox) at the last time point compared to the first time point. So my design matrix is as follow and I applied estimateGLMCommonDisp function with a robust option without giving a design matrix as suggested in edgeR manual. However, I was wondering is there anything specific I need to do for no-replicate dataset when applying estimateGLMTrendedDisp and estimateGLMTagwiseDisp functions? Should I leave the design matrix out out keep it in ?
I was also wondering if this is the best approach for time series analysis with no replicate ?
In EdgeR manual also mentioned that a reduced model matrix could be used in conjuction with robust estimateGLMCommonDisp. What reduced design model matrix would be appropriate in this situation ?
Here is my code so far:
design <- model.matrix(~sampleTreatment + sampleTime + sampleTreatment:sampleTime, data = targets.skno.sc) edger.counts <- counts(dds.skno.sc.noBaseline) edger.counts.rowsum <- apply(edger.counts, 1 , sum) edger.counts[edger.counts.rowsum <= 10,] edger.counts.filt <- edger.counts[edger.counts.rowsum > 10,] targets.skno.sc <- colData(dds.skno.sc.noBaseline) group.skno.sc <- factor(paste(targets.skno.sc$sampleTreatment, targets.skno.sc$sampleTime,sep=".")) dger.filt <- DGEList(counts=skno.sc.edger.counts.filt, group=group.skno.sc) sc.edger.filt.uqn <- calcNormFactors(sc.edger.filt, method="upperquartile") sc.edger.filt.uqn.robust <- estimateGLMCommonDisp(sc.edger.filt.uqn, method="deviance", robust=TRUE , subset=NULL,verbose = TRUE ) sc.edger.filt.uqn.robust <- estimateGLMTrendedDisp(sc.edger.filt.uqn.robust) sc.edger.filt.uqn.robust <- estimateGLMTagwiseDisp(sc.edger.filt.uqn.robust) sc.filt.uqn.robust.fit.8 <- glmLRT(sc.filt.uqn.robust.fit) sc.filt.uqn.robust.fit.8.res <- topTags(sc.filt.uqn.robust.fit.8, n=nrow(sc.filt.uqn.robust.fit.8))
> sessionInfo() R version 3.2.1 (2015-06-18) Platform: x86_64-pc-linux-gnu (64-bit) Running under: Ubuntu 14.04.3 LTS locale: [1] LC_CTYPE=en_GB.UTF-8 LC_NUMERIC=C LC_TIME=en_GB.UTF-8 LC_COLLATE=en_GB.UTF-8 LC_MONETARY=en_GB.UTF-8 [6] LC_MESSAGES=en_GB.UTF-8 LC_PAPER=en_GB.UTF-8 LC_NAME=C LC_ADDRESS=C LC_TELEPHONE=C [11] LC_MEASUREMENT=en_GB.UTF-8 LC_IDENTIFICATION=C attached base packages: [1] parallel stats4 stats graphics grDevices utils datasets methods base other attached packages: [1] lattice_0.20-33 genefilter_1.50.0 RColorBrewer_1.1-2 DESeq2_1.8.1 RcppArmadillo_0.5.500.2.0 [6] Rcpp_0.12.1 GenomicRanges_1.20.6 GenomeInfoDb_1.4.2 IRanges_2.2.7 S4Vectors_0.6.5 [11] BiocGenerics_0.14.0 edgeR_3.10.2 limma_3.24.15 loaded via a namespace (and not attached): [1] futile.logger_1.4.1 plyr_1.8.3 XVector_0.8.0 futile.options_1.0.0 tools_3.2.1 rpart_4.1-10 [7] digest_0.6.8 RSQLite_1.0.0 annotate_1.46.1 gtable_0.1.2 DBI_0.3.1 proto_0.3-10 [13] gridExtra_2.0.0 stringr_1.0.0 cluster_2.0.3 locfit_1.5-9.1 nnet_7.3-11 grid_3.2.1 [19] Biobase_2.28.0 AnnotationDbi_1.30.1 XML_3.98-1.3 survival_2.38-3 BiocParallel_1.2.21 foreign_0.8-66 [25] latticeExtra_0.6-26 Formula_1.2-1 geneplotter_1.46.0 ggplot2_1.0.1 reshape2_1.4.1 lambda.r_1.1.7 [31] magrittr_1.5 scales_0.3.0 Hmisc_3.16-0 MASS_7.3-44 splines_3.2.1 xtable_1.7-4 [37] colorspace_1.2-6 stringi_0.5-5 acepack_1.3-3.3 munsell_0.4.2
|
What are the details of your samples, e.g., how many timepoints do you have for each of your conditions?