Hi,
I am trying to run DESeq2 with the duplicated raw counts from 4 groups and 2 conditions. In the comparison using "result ( contrast)", some comparisons had all same padj (0.9999874). Is it normal or anything wrong? FYI, the code are below. Thank you in advance for your time.
>library("DESeq2") >countMatrix = read.table("~/Desktop/aaa.txt",header = T,row.names = 1) >coldata = data.frame(row.names =colnames(countMatrix),group =rep(c("gt1","gt2","gt3","gt4"),2,each = 2),treatment = rep(c("control","treated"),each= 8)) >coldata$treatment = factor(x = coldata$treatment,levels = c('control','treated'))>dds = DESeqDataSetFromMatrix(countData =countMatrix, colData = coldata, design = ~ group + treatment +group:treatment) >dds = DESeq(dds) > resultsNames(dds) [1] "Intercept" "groupgt1" "groupgt2" "groupgt3" [5] "groupgt4" "treatmentcontrol" "treatmenttreated" "groupgt1.treatmentcontrol" [9] "groupgt2.treatmentcontrol" "groupgt3.treatmentcontrol" "groupgt4.treatmentcontrol" "groupgt1.treatmenttreated" [13] "groupgt2.treatmenttreated" "groupgt3.treatmenttreated" "groupgt4.treatmenttreated" > res <-results(dds, contrast=c("treatment", "treated", "control")) > res
log2 fold change (MAP): treatment treated vs control
Wald test p-value: treatment treated vs control
DataFrame with 35584 rows and 6 columns
baseMean log2FoldChange lfcSE stat pvalue padj
<numeric> <numeric> <numeric> <numeric> <numeric> <numeric>
unigene22422654 82.11115 2.753315 0.2880473 9.558550 1.194176e-21 1.863751e-17
unigene22392883 110.42190 2.742819 0.3119236 8.793239 1.453092e-18 1.133920e-14
unigene22410436 94.91773 2.054046 0.2427170 8.462723 2.612059e-17 1.306140e-13
unigene22398806 133.11805 2.269261 0.2690689 8.433751 3.347576e-17 1.306140e-13
unigene22391050 159.42752 1.589496 0.1900555 8.363325 6.097477e-17 1.903266e-13
... ... ... ... ... ... ...
unigene22403397 0 NA NA NA NA NA
unigene22417358 0 NA NA NA NA NA
unigene22397386 0 NA NA NA NA NA
unigene22415322 0 NA NA NA NA NA
unigene22402022 0 NA NA NA NA NA
> res1 <- results(dds, contrast=list("groupgt2.treatmenttreated", "groupgt2.treatmentcontrol"))
> res1
log2 fold change (MAP): groupgt2.treatmenttreated vs groupgt2.treatmentcontrol
Wald test p-value: groupgt2.treatmenttreated vs groupgt2.treatmentcontrol
DataFrame with 35584 rows and 6 columns
baseMean log2FoldChange lfcSE stat pvalue padj
<numeric> <numeric> <numeric> <numeric> <numeric> <numeric>
unigene22408676 23.641057 -0.2285822 0.5213050 -0.4384808 0.6610378 0.9999874
unigene22408675 1.032055 -0.6212150 1.2989812 -0.4782325 0.6324848 0.9999874
unigene22408674 11.503303 -0.1884673 0.5643655 -0.3339456 0.7384206 0.9999874
unigene22408673 1.849157 1.5855804 1.1773601 1.3467251 0.1780688 0.9999874
unigene22408672 2.717044 -1.2518670 1.0399068 -1.2038261 0.2286568 0.9999874
... ... ... ... ... ... ...
unigene22403397 0 NA NA NA NA NA
unigene22417358 0 NA NA NA NA NA
unigene22397386 0 NA NA NA NA NA
unigene22415322 0 NA NA NA NA NA
unigene22402022 0 NA NA NA NA NA