I use deseq2 for rna-seq data in treated and untreated group. I have no replicate in each group. The result I get ordered by pvalue:
log2 fold change (MAP): condition treated vs untreated
Wald test p-value: condition treated vs untreated
DataFrame with 6 rows and 6 columns
baseMean log2FoldChange lfcSE stat pvalue
<numeric> <numeric> <numeric> <numeric> <numeric>
Cxcl1 2931.3112 3.038196 1.052850 2.885687 0.003905598
Angpt1 883.8835 -3.010196 1.055311 -2.852427 0.004338684
Pcdh1 1482.8029 3.001023 1.058310 2.835676 0.004572883
C3 644.1743 2.992916 1.057344 2.830599 0.004646087
Postn 618.3649 -2.913716 1.049750 -2.775628 0.005509526
Zc3h12a 1049.7000 2.902225 1.046408 2.773510 0.005545509
padj
<numeric>
Cxcl1 0.9222841
Angpt1 0.9222841
Pcdh1 0.9222841
C3 0.9222841
Postn 0.9222841
Zc3h12a 0.9222841
I wonder why so large padj? I have 24062 genes in count table. Can I just ignore padj and use the 20 or 50 genes with smallest pvalue? The count table:
https://drive.google.com/file/d/0B7lsqOFmCD1sWFVJUFFOLVpOS00/view?usp=sharing
Thank you Mike, nice to see you again after ph525 series. I think I have to try other packages to do with this case.