Dear bioconductor support,
I am trying use barcodeplot to visualize gene set enrichment using limma's function barcode plot. I am feeding the function a vector of the t-statistics from the fit2 object with the column indicating the contrast of interest, and the index is a vector of the indices that correspond to the genes in the set.
tstats <- fit2$t[,1] index <- c(7,22,38,49,205,...)
The following is my barcode plot call
barcodeplot(tstats,index,worm=TRUE)
I then get the following error:
Error in (function (classes, fdef, mtable) : unable to find an inherited method for function ‘filter’ for signature ‘"numeric", "numeric"’
I believe this error is arising in the tricubeMovingAverage function because if I call barcode plot with worm=FALSE, I do not get this error. Is this a bug in the function or could there be a something incorrect about of my input?
Thank you.
R version 3.1.3 (2015-03-09) Platform: x86_64-apple-darwin10.8.0 (64-bit) Running under: OS X 10.8.5 (Mountain Lion) locale: [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8 attached base packages: [1] compiler grid stats4 parallel stats graphics grDevices utils datasets methods base other attached packages: [1] BiocInstaller_1.16.5 ggbiplot_0.55 scales_0.2.4 plyr_1.8.2 seqLogo_1.32.1 motifStack_1.10.2 [7] ade4_1.7-2 MotIV_1.22.0 grImport_0.9-0 MotifDb_1.8.0 Biostrings_2.34.1 XVector_0.6.0 [13] Gviz_1.10.11 DEXSeq_1.12.2 BiocParallel_1.0.3 DESeq2_1.6.3 RcppArmadillo_0.5.100.1.0 Rcpp_0.11.6 [19] pheatmap_1.0.2 Heatplus_2.12.0 CellMix_1.6.2 stringr_1.0.0 csSAM_1.2.4 NMF_0.20.5 [25] rngtools_1.2.4 pkgmaker_0.22 registry_0.2 sva_3.12.0 genefilter_1.48.1 mgcv_1.8-6 [31] proto_0.3-10 statmod_1.4.21 RSvgDevice_0.6.4.4 doMC_1.3.3 iterators_1.0.7 foreach_1.4.2 [37] caret_6.0-47 TPAM_1.0 Matrix_1.2-0 MASS_7.3-40 pamr_1.55 survival_2.38-1 [43] cluster_2.0.1 gtable_0.1.2 ggdendro_0.1-15 reshape_0.8.5 venneuler_1.1-0 rJava_0.9-6 [49] RColorBrewer_1.1-2 gridBase_0.4-7 VennDiagram_1.6.9 GenomicFeatures_1.18.7 GenomicRanges_1.18.4 org.Hs.eg.db_3.0.0 [55] RSQLite_1.0.0 DBI_0.3.1 GSEABase_1.28.0 graph_1.44.1 GSVA_1.14.1 matrixStats_0.14.0 [61] gplots_2.17.0 nlme_3.1-120 ggplot2_1.0.1 R2HTML_2.3.1 annotate_1.44.0 XML_3.98-1.1 [67] AnnotationDbi_1.28.2 GenomeInfoDb_1.2.5 IRanges_2.0.1 S4Vectors_0.4.0 biomaRt_2.22.0 edgeR_3.8.6 [73] limma_3.22.7 DESeq_1.18.0 lattice_0.20-31 locfit_1.5-9.1 Biobase_2.26.0 BiocGenerics_0.12.1 loaded via a namespace (and not attached): [1] acepack_1.3-3.3 base64enc_0.1-2 BatchJobs_1.6 BBmisc_1.9 beeswarm_0.2.0 bibtex_0.4.0 [7] biovizBase_1.14.1 bitops_1.0-6 BradleyTerry2_1.0-6 brew_1.0-6 brglm_0.5-9 BSgenome_1.34.1 [13] car_2.0-25 caTools_1.17.1 checkmate_1.5.3 codetools_0.2-11 colorspace_1.2-6 corpcor_1.6.7 [19] dichromat_2.0-0 digest_0.6.8 doParallel_1.0.8 fail_1.2 foreign_0.8-63 Formula_1.2-1 [25] gdata_2.16.1 geneplotter_1.44.0 GenomicAlignments_1.2.2 gridExtra_0.9.1 gtools_3.4.2 Hmisc_3.16-0 [31] hwriter_1.3.2 KernSmooth_2.23-14 latticeExtra_0.6-26 limSolve_1.5.5.1 lme4_1.1-7 lpSolve_5.6.11 [37] magrittr_1.5 minqa_1.2.4 munsell_0.4.2 nloptr_1.0.4 nnet_7.3-9 pbkrtest_0.4-2 [43] preprocessCore_1.28.0 quadprog_1.5-5 quantreg_5.11 RCurl_1.95-4.6 reshape2_1.4.1 rGADEM_2.14.0 [49] rpart_4.1-9 Rsamtools_1.18.3 rtracklayer_1.26.3 sendmailR_1.2-1 SparseM_1.6 splines_3.1.3 [55] stringi_0.4-1 tools_3.1.3 VariantAnnotation_1.12.9 xtable_1.7-4 zlibbioc_1.12.0
Thank you so much! Loading limma by itself allowed the code to complete without error.