DeSeq2 Multiple Conditons
1
0
Entering edit mode
umut.caglar ▴ 10
@umutcaglar-7472
Last seen 8.4 years ago
United States

Hi everybody

I am kind of new at DeSeq2. And I want to understand contrast command in results function.

I have a data set dataset composed of multiple conditions. So instead of the example dataset treated vs untreated I have many different conditions (if number is necessary it is 52). I have 3 different samples for each condition. Data is raw RNA counts. I have counts for around 5000 different RNA's.

Now I want to calculate log2 changes between 2 given conditions say "A" and "B". I am doing this by 

rnaObject01<-rnaObject
rnaObject01$condition <- relevel(rnaObject01$condition, "C1")
rnaObject01 <- estimateSizeFactors(rnaObject01)
rnaObject01 <- DESeq(rnaObject01)
resRnaObject01 <- results(rnaObject01,contrast=c("condition","A","B"))

And I notice that log 2 changes between these 2 conditions depends on my base condition and my result changes when I change my base level by using

rnaObject02<-rnaObject
rnaObject02$condition <- relevel(rnaObject02$condition, "C2")
rnaObject02 <- estimateSizeFactors(rnaObject02)
rnaObject02 <- DESeq(rnaObject02)
resRnaObject02 <- results(rnaObject02,contrast=c("condition","A","B"))

 

My question is why the log 2 change between conditions A and B depends on base level C1 or C2. (if needed I can give more details).

Thank you very much 

Best regards

 

Here are some information that might or might not be relevant

  • Used Guide: Differential analysis of count data – the DESeq2 package (December 16, 2014 )
  • OS: mac yosemite
  • Language R. 
  • R - Season info:

    sessionInfo()
    R version 3.1.2 (2014-10-31)
    Platform: x86_64-apple-darwin13.4.0 (64-bit)

    locale:
    [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

    attached base packages:
    [1] stats4    parallel  stats     graphics  grDevices utils     datasets  methods   base     

    other attached packages:
     [1] dplyr_0.4.1               DESeq2_1.6.3              RcppArmadillo_0.4.600.4.0 Rcpp_0.11.4              
     [5] GenomicRanges_1.18.4      GenomeInfoDb_1.2.4        IRanges_2.0.1             S4Vectors_0.4.0          
     [9] Biobase_2.26.0            BiocGenerics_0.12.1      

    loaded via a namespace (and not attached):
     [1] acepack_1.3-3.3      annotate_1.44.0      AnnotationDbi_1.28.1 assertthat_0.1       base64enc_0.1-2     
     [6] BatchJobs_1.5        BBmisc_1.9           BiocParallel_1.0.3   brew_1.0-6           checkmate_1.5.1     
    [11] cluster_2.0.1        codetools_0.2-10     colorspace_1.2-4     DBI_0.3.1            digest_0.6.8        
    [16] fail_1.2             foreach_1.4.2        foreign_0.8-63       Formula_1.2-0        genefilter_1.48.1   
    [21] geneplotter_1.44.0   ggplot2_1.0.0        grid_3.1.2           gtable_0.1.2         Hmisc_3.15-0        
    [26] iterators_1.0.7      lattice_0.20-30      latticeExtra_0.6-26  locfit_1.5-9.1       magrittr_1.5        
    [31] MASS_7.3-39          munsell_0.4.2        nnet_7.3-9           plyr_1.8.1           proto_0.3-10        
    [36] RColorBrewer_1.1-2   reshape2_1.4.1       rpart_4.1-9          RSQLite_1.0.0        scales_0.2.4        
    [41] sendmailR_1.2-1      splines_3.1.2        stringr_0.6.2        survival_2.37-7      tools_3.1.2         
    [46] XML_3.98-1.1         xtable_1.7-4         XVector_0.6.0

 

deseq2 multiple factor design • 1.5k views
ADD COMMENT
1
Entering edit mode
@mikelove
Last seen 1 day ago
United States

hi,

This is likely just numerical stability. The solution is a point in 53 dimensional space (+1 for the intercept term which is not moderated), so there is more space to give nearly the same likelihood. Since v1.4, the prior is calculated in such a way that it will be the same after relevelling, as are the coefficients. But numerically they might not be identical.

If you turn off the betaPrior, (betaPrior=FALSE) then it should be even more numerically stable after relevelling, although you lose the benefits of moderation on the LFC.

ADD COMMENT

Login before adding your answer.

Traffic: 711 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6