Entering edit mode
Guest User
★
13k
@guest-user-4897
Last seen 10.5 years ago
Hi All,
I have an AffyBatch object generated with createAB() function from
ExiMiR package, and when I try to do the spike-in normalization, as
described in vignette, I get following message:
The intensity resolution of the spike-in probe sets is too coarse
(8.56 > 1) to guarantee a good performance of spike-in normalization
Using median normalization...
and normalization method switches to "median".
My question is: how can I "force" the execution of spikein
normalization (however inappropriate/suboptimal it my be for my data)?
Which particular parameter in normalize.param list should I modify
(and how) to get any form of spike-in normalization, since I need it
for illustration purposes only...?
Here is the code I've used:
>library(limma)
>library(ExiMiR)
>targets <- readTargets()
>MiljRNA <- read.maimages(targets, source="agilent", green.only=TRUE)
>MiljRNA.batch <- createAB(MiljRNA)
>spikein.set <- grep("^spike", featureNames(MiljRNA.batch),
value=TRUE)
>MiljRNA.spike <- NormiR(MiljRNA.batch, background.correct=FALSE,
normalize.method="spikein",
normalize.param=list(probeset.list=spikein.set),
summary.method="medianpolish", verbose=TRUE)
Maybe I should add that intensity distributions of last 4 spikein
probesets are very similar in shape, while others (6 more) show no
common pattern... still using only subset of those 4 spikein probesets
didn't get me anywhere...
And, if it of any use, my data came from miRCURY LNAmicroRNA Array
v.11 (Exiqon A/S, Vedbaek, Denmark) chip , as processed with Agilent
FE software.
Any suggestion would be highly appreciated :-)
Best
Svetlana
-- output of sessionInfo():
sessionInfo()
R version 3.0.3 (2014-03-06)
Platform: i386-w64-mingw32/i386 (32-bit)
locale:
[1] LC_COLLATE=English_United States.1252
[2] LC_CTYPE=English_United States.1252
[3] LC_MONETARY=English_United States.1252
[4] LC_NUMERIC=C
[5] LC_TIME=English_United States.1252
attached base packages:
[1] parallel stats graphics grDevices utils
[6] datasets methods base
other attached packages:
[1] ExiMiR_2.4.0 affycoretools_1.34.0
[3] KEGG.db_2.10.1 GO.db_2.10.1
[5] RSQLite_0.11.4 DBI_0.2-7
[7] AnnotationDbi_1.24.0 preprocessCore_1.24.0
[9] limma_3.18.13 vsn_3.30.0
[11] affy_1.40.0 GenomicRanges_1.14.4
[13] XVector_0.2.0 GEOquery_2.28.0
[15] Biobase_2.22.0 IRanges_1.20.7
[17] BiocGenerics_0.8.0
loaded via a namespace (and not attached):
[1] affyio_1.30.0 annaffy_1.34.0
[3] annotate_1.40.1 AnnotationForge_1.4.4
[5] BiocInstaller_1.12.1 biomaRt_2.18.0
[7] Biostrings_2.30.1 biovizBase_1.10.8
[9] bit_1.1-12 bitops_1.0-6
[11] BSgenome_1.30.0 Category_2.28.0
[13] caTools_1.17 cluster_1.15.2
[15] codetools_0.2-8 colorspace_1.2-4
[17] DESeq2_1.2.10 dichromat_2.0-0
[19] digest_0.6.4 edgeR_3.4.2
[21] ff_2.2-13 foreach_1.4.2
[23] Formula_1.1-1 gcrma_2.34.0
[25] gdata_2.13.3 genefilter_1.44.0
[27] GenomicFeatures_1.14.5 ggbio_1.10.16
[29] ggplot2_0.9.3.1 GOstats_2.28.0
[31] gplots_2.13.0 graph_1.40.1
[33] grid_3.0.3 gridExtra_0.9.1
[35] GSEABase_1.24.0 gtable_0.1.2
[37] gtools_3.4.0 Hmisc_3.14-4
[39] hwriter_1.3 iterators_1.0.7
[41] KernSmooth_2.23-12 lattice_0.20-29
[43] latticeExtra_0.6-26 locfit_1.5-9.1
[45] MASS_7.3-33 Matrix_1.1-3
[47] MmPalateMiRNA_1.12.0 munsell_0.4.2
[49] oligoClasses_1.24.0 PFAM.db_2.10.1
[51] plyr_1.8.1 pROC_1.7.2
[53] proto_0.3-10 R.methodsS3_1.6.1
[55] R.oo_1.18.0 R.utils_1.32.4
[57] R2HTML_2.2.1 RBGL_1.38.0
[59] RColorBrewer_1.0-5 Rcpp_0.11.1
[61] RcppArmadillo_0.4.320.0 RCurl_1.95-4.1
[63] ReportingTools_2.2.0 reshape2_1.4
[65] Rsamtools_1.14.3 rtracklayer_1.22.7
[67] scales_0.2.4 splines_3.0.3
[69] stats4_3.0.3 stringr_0.6.2
[71] survival_2.37-7 tools_3.0.3
[73] VariantAnnotation_1.8.13 XML_3.98-1.1
[75] xtable_1.7-3 zlibbioc_1.8.0
--
Sent via the guest posting facility at bioconductor.org.