Entering edit mode
Konika Chawla
▴
20
@konika-chawla-6650
Last seen 8.2 years ago
Hi
I have a microarray data comprised of 3 treatment conditions (N,M,I)
and
2 time points (4dpi and 5dpi).
I used limma - ebayes fit and toptable with coefficient for a specific
contrast to get the differentially expressed genes and adjusted P
value.
I also did a ANOVA test, and I want to know which one is better to
identify differentially expressed genes.
CODE: for eBAYES and Toptable
design <- model.matrix(~
0+factor(c(1,2,3,4,5,6,1,2,3,4,5,6,1,2,3,4,5,6)))
colnames(design) <- c("N_4dpi", "M_4dpi", "I_4dpi","N_5dpi", "M_5dpi",
"I_5dpi")
fit <- lmFit(eset, design)
contrast.matrix <-
makeContrasts("I_4dpi-M_4dpi","I_5dpi-M_5dpi","I_4dpi-N_4dpi","I_5dpi-
N_5dpi","M_4dpi-N_4dpi","M_5dpi-N_5dpi",
levels=design)
fit2 <- contrasts.fit(fit, contrast.matrix)
fit2 <- eBayes(fit2)
2) #If we do one comparison at a time I/M 4dpi
tab_all<-topTable(fit2, coef=1,adjust="BH",number=100,p.value=1)
head(tab_all)
write.table(tab_all,"I-M-4dpi.txt",sep="\t",quote=FALSE)
This gives zero significant genes.
############################################################
CODE for ANOVA
targets <- readTargets("target_data.txt")
data <- ReadAffy(filenames=targets$filename)
experiment <- targets$experiment
time <- targets$time
treatment <- targets$treatment
##normalization
eset <- rma(data)
exprs.eset <- exprs(eset)
exprs.eset.df <- data.frame(exprs.eset)
aof <- function(x) {
m<-data.frame(time, treatment, x);
anova(aov(x ~ time + treatment + time * treatment, m))
}
anovaresults <- apply(exprs.eset, 1, aof)
This gives over a thousand genes with treatment_Pr.F <0.05 , Does
this
need to be corrected for multiple testing, why is the huge difference?
Appreciate your help.
--
With Regards,
Konika Chawla
NTNU, Norway
Phone +4772821344
[[alternative HTML version deleted]]