high poportion of identical expression measure with RMA and 3 arrays
1
0
Entering edit mode
@adaikalavan-ramasamy-675
Last seen 10.2 years ago
I was pondering about the issue of minimum number of required arrays for RMA and GCRMA when I came across a thread by James MacDonald http://files.protsuggest.org/biocond/html/3347.html. He mentioned that median polish has a peculiar feature that returned identical values for odd number of arrays, especially 3 arrays. I am not sure if this issue has been addressed since but here is some empirical evidence to support this in case anyone is interested. ### Codes ### library(affy) v <- rep(NA, 10) for(i in 2:10){ a <- exprs( justRMA( filenames=list.celfiles()[1:i] )) v[i] <- mean( apply(a, 1, var) == 0 ) # proportion identical gc(); print(i) } 100*v ### Results ### # Dataset 1 : hu6800 (west) > 100 * v [1] NA 0.0000000 13.1434984 0.0000000 0.1262449 0.0000000 [7] 0.0000000 0.0000000 0.0000000 0.0000000 # Dataset 2 : hgu-95av2 (febbo) > 100 * v [1] NA 0.007920792 7.912871287 0.000000000 0.095049505 0.000000000 [7] 0.000000000 0.000000000 0.000000000 0.000000000 # Dataset 3 : HGU-133A (pga) > 100 * v [1] NA 1.5348023 16.0750348 0.0000000 0.3590181 0.0000000 [7] 0.0000000 0.0000000 0.0000000 0.0000000 When there are 3 arrays, there is a high proportion of probesets with identical values (i.e. zero variance). I am trying to see if the same effect can be seen with justGCRMA. misc : affy 1.4.32, gcrma 1.1.0, R-1.9.0 (12/04/2004) and FC 2.
hu6800 affy gcrma hu6800 affy gcrma • 805 views
ADD COMMENT
0
Entering edit mode
@adaikalavan-ramasamy-675
Last seen 10.2 years ago
Here are the results for GC-RMA for the same datasets as below : # Dataset 1 > print( 100*v ) [1] NA 3.54888484 5.62491233 0.00000000 0.07013606 0.00000000 [7] 0.00000000 0.00000000 0.00000000 0.00000000 # Dataset 2 > print( 100*v ) [1] NA 0.000000 3.366337 0.000000 0.000000 0.000000 0.000000 0.000000 [9] 0.000000 0.000000 # Dataset 3 > print( 100*v ) [1] NA 0.1077054 9.0562312 0.0000000 0.1750213 0.0000000 0.0000000 [8] 0.0000000 0.0000000 0.0000000 On Mon, 2004-09-13 at 18:12, Adaikalavan Ramasamy wrote: > I was pondering about the issue of minimum number of required arrays for > RMA and GCRMA when I came across a thread by James MacDonald > http://files.protsuggest.org/biocond/html/3347.html. He mentioned that > median polish has a peculiar feature that returned identical values for > odd number of arrays, especially 3 arrays. I am not sure if this issue > has been addressed since but here is some empirical evidence to support > this in case anyone is interested. > > ### Codes ### > > library(affy) > v <- rep(NA, 10) > > for(i in 2:10){ > a <- exprs( justRMA( filenames=list.celfiles()[1:i] )) > v[i] <- mean( apply(a, 1, var) == 0 ) # proportion identical > gc(); print(i) > } > 100*v > > > ### Results ### > > # Dataset 1 : hu6800 (west) > > 100 * v > [1] NA 0.0000000 13.1434984 0.0000000 0.1262449 0.0000000 > [7] 0.0000000 0.0000000 0.0000000 0.0000000 > > # Dataset 2 : hgu-95av2 (febbo) > > 100 * v > [1] NA 0.007920792 7.912871287 0.000000000 0.095049505 0.000000000 > [7] 0.000000000 0.000000000 0.000000000 0.000000000 > > # Dataset 3 : HGU-133A (pga) > > 100 * v > [1] NA 1.5348023 16.0750348 0.0000000 0.3590181 0.0000000 > [7] 0.0000000 0.0000000 0.0000000 0.0000000 > > > When there are 3 arrays, there is a high proportion of probesets with > identical values (i.e. zero variance). I am trying to see if the same > effect can be seen with justGCRMA. > > misc : affy 1.4.32, gcrma 1.1.0, R-1.9.0 (12/04/2004) and FC 2. > > _______________________________________________ > Bioconductor mailing list > Bioconductor@stat.math.ethz.ch > https://stat.ethz.ch/mailman/listinfo/bioconductor >
ADD COMMENT

Login before adding your answer.

Traffic: 531 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6